Math, asked by nirmalaoja123, 11 months ago

Find the roots of the following quadratic equation 15x - 10 root 6 x + 10 = 0. please explain properly ​

Answers

Answered by Sharad001
84

QuesTion :-

 \rm Find  \: the  \: r oots  \: of \:  the \:  following  \: quadratic  \\  \rm equation  \: 15 {x}^{2}  - 10  \sqrt{6} x +  \: 10 = 0 \: .

Answer :-

 \to \boxed{ \rm x =  \frac{ \sqrt{2} }{ \sqrt{3} } }  \\ \bf or \\  \:  \to  \boxed{\rm \: x =  \sqrt{ \frac{2}{3} } } \:

To Find :-

→ Roots of the given quadratic equation .

Solution :-

We have a Quadratic equation -

 \to \rm \blue{ 15 {x}^{2} } - 10 \sqrt{6} x  \orange{+ 10 = 0} \\  \\ \bf \red{ splitting \: the \: middle \: term \: } \\  \:  \\  \to \rm \red{15 {x}^{2}  - (5 \sqrt{6}}  + 5  \green{\sqrt{6} )x + 10 = 0} \\  \\  \to \rm \pink{ 15 {x}^{2}  - 5} \sqrt{6} \orange{ x - 5 \sqrt{6} x }+ 10 = 0 \\  \\  \to \rm \blue{ 5 (3 {x}^{2}  -}  \sqrt{6} x -  \green{ \sqrt{6} x + 2) = 0} \\  \\  \to \rm \red{  3 {x}^{2}  -  \sqrt{2}  }\sqrt{3} x -  \pink{ \sqrt{2}  \sqrt{3} x} + 2 = 0 \\  \\  \to \rm   \orange{\sqrt{3}x( \sqrt{3} x -  \sqrt{2} ) -} \red{  \sqrt{2} ( \sqrt{3} x -  \sqrt{2} ) = 0} \\  \\  \to \rm \green{ ( \sqrt{3} x -  \sqrt{2} )}( \sqrt{3} x -  \sqrt{2} ) = 0 \\  \\  \to \:  {( \sqrt{3}x  -  \sqrt{2} ) }^{2}  = 0 \\  \\  \to \rm \green{  \sqrt{3} x - } \sqrt{2}  = 0 \\  \\  \to \rm \red{  \sqrt{3} x =  \sqrt{2} } \\  \\   \to \boxed{ \rm x =  \frac{ \sqrt{2} }{ \sqrt{3} } }  \\ \bf or \\  \:  \to  \boxed{\rm \: x =  \sqrt{ \frac{2}{3} } }

Similar questions