Math, asked by pratapchittimalla, 10 months ago

find the roots of the following quadratic equation given in question 1 above by applying the. a)2xsquare-7x+3=0 b)2xsquare +x-4=0 c)4xsqrare+4√3x+3=0 d)2xsquare+x+4=0​

Answers

Answered by rikdas914
2

Answer:

plz have a look hope it may help you

Attachments:
Answered by harshitha926594
1

Step-by-step explanation:

2 {x}^{2}  - 7x + 3 = 0 \\ 2 {x}^{2}  - 6x - x + 3 = 0 \\ 2x(x - 3) - 1(x - 3) = 0 \\ (x - 3)(2x - 1) = 0 \\ x - 3 = 0 \:  \: or \:  \: 2x - 1 = 0 \\ x = 3 \:  \: or \:  \: 2x = 1 \\  \boxed{x =  {\underline{ \underline{3}}} \:  \: or \:  \: x = {\underline{ \underline \frac{1}{2} }}} \\  \\ 2 {x}^{2}  + x - 4 = 0 \\ x =  \frac{  - b± \sqrt{ {b}^{2} - 4ac }  }{2a}  \\ x =  \frac{ - ( + 1)± \sqrt{ {1}^{2} - 4(2)( - 4) } }{2 \times 2}  \\ x =  \frac{ - 1± \sqrt{1 - ( - 32)} }{4}  \\ x =  \frac{ - 1± \sqrt{1 + 32} }{4}  \\ x =  \frac{ - 1± \sqrt{33} }{4}  \\  \boxed{x = { \underline{ \underline{ \frac{ - 1 +  \sqrt{33} }{4} }}} \:  \: or \:  \: x = { \underline{ \underline{ \frac{ - 1 -  \sqrt{33} }{4} }}}}

Similar questions