Math, asked by Skyllen, 2 months ago

Find the roots of the following quadratic equation:-
 \sf \sqrt{3x {}^{2} }  + 10x + 7 \sqrt{3}  = 0

Answers

Answered by suraj5070
299

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt 1: \:Find\: the \:roots\: of \:the\: following\: quadratic \\\tt equation :

 \tt \sqrt{{3x}^{2}} + 10x + 7 \sqrt{3} = 0

 \sf \bf \huge {\boxed {\mathbb {SOLUTION}}}

 {\pink {\underline {\bf {\pmb {The\:roots \:of \:the\:quadratic \:equation (Factorisation \:method)}}}}}

 \bf \sqrt{3}{x}^{2}\:+\: 10x \:+\: 7\sqrt{3} = 0

\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\sf 21{x}^{2} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \swarrow \searrow \\\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\sf + 3x \: \: + 7x

 \bf \implies \sqrt{3}{x}^{2} +3x+7x+7\sqrt{3} = 0

 \bf \implies \sqrt{3}x\Big(x+\sqrt{3}\Big)+7\Big(x+\sqrt{3}\Big)=0\longrightarrow \big(\because 3=\sqrt{3}\times \sqrt{3}\big)

 \bf \implies \Big(x+\sqrt{3}\Big) \Big(\sqrt{3}x+7\Big)=0

 \bf \implies x+\sqrt{3}=0\:\:or\:\:\sqrt{3}x+7=0

 \bf \implies x=-\sqrt{3} \:\:or\:\:sqrt{3}x=-7

 \implies{\blue {\boxed {\boxed {\purple{\mathfrak {x=-\sqrt{3} \:\:or\:\:x=\dfrac{-7}{\sqrt{3}}}}}}}}

{\underbrace {\red {\underline {\red {\overline {\red {\pmb {\sf {{\therefore}} The\:roots \:of \:the\:quadratic \:equation \:\sqrt{3}{x}^{2} +3x+7x+7\sqrt{3} = 0\:are\:\sqrt{3}\:or\:\dfrac{-7}{\sqrt{3}}}}}}}}}}

___________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

{\green{\underline {\pmb{Types\: of\: methods\: to\: solve\: quadratic \:equation}}}}

 \sf Factoring\:method

 \sf Completing\: the\: Square\:method

 \sf Quadratic\: Formula\:method

 \sf Grapical \:method

Answered by nancy359
3

\boxed {\boxed{ { \green{ \bold{ \underline{Verified \: Answer \: }}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \bigstar{\underline{\underline{{\sf\ \red{ SOLUTION-}}}}}

√3x2 + 10x + 7√3 = 0

⇒ √3x2 + 3x + 7x + 7√3 = 0

⇒ √3x( x + √3) + 7(x + √3) = 0

⇒ √3x + 7 = 0 or x + √3 = 0

x = - 7√3 or - √3 are two roots of equation.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions