Math, asked by arpit3143, 9 months ago

Find the roots of the following quadratic equations by factorisation: √3x2 + 10x + 7√3 = 0

Answers

Answered by Anonymous
68

Answer:

Roots of the given equation are    -  \sqrt{3}  \:  and \:   -  \frac{7}{ \sqrt{3} }

Step-by-step explanation:

 =  >  \sqrt{3}  {x}^{2}  + 10x + 7 \sqrt{3}  = 0 \\  \\  =  >  \sqrt{3}  {x}^{2}  + (7 + 3)x + 7 \sqrt{3}  = 0 \\  \\  =  >   \sqrt{3}  {x}^{2}  + 7x + 3x + 7 \sqrt{3}  = 0 \\  \\  =  > x( \sqrt{3} x + 7)  \sqrt{3} ( \sqrt{3} x + 7) = 0 \\  \\  =  > (x +  \sqrt{3} )( \sqrt{3} x + 7) = 0 \\  \\  =  > (x +  \sqrt{3} ) = 0 \:  \:  \:  \:  \: and( \sqrt{3} x + 7) = 0 \\  \\  =  > x =  -  \sqrt{3}  \:  \:  \:  \:  \: and \:  \:  \:  \:  \: x =  -  \frac{7}{ \sqrt{3} }

Answered by JanviMalhan
129

Answer:

 \boxed{ \bold{ \frac{ - 7}{ \sqrt{3} }\: and \:  -  \sqrt{3} \:  are \: zeros \: of \: polynomial} }

Step by step explanation:

To Find:

the roots of the √3x2 + 10x + 7√3 = 0 quadratic equations by factorisation.

Solution:

  \sf\sqrt{3}  {x}^{2}  + 10x + 7 \sqrt{3}  = 0 \\ \\   \sf \sqrt{3}  {x}^{2}  + 7x + 3x + 7 \sqrt{3}  = 0 \\ \\  \sf x( \sqrt{3} x + 7) +  \sqrt{3} ( \sqrt{3} x + 7 = 0 \\ \\  \sf ( \sqrt{3} x + 7)  \: (x +  \sqrt{3} ) = 0  \\  \\  \:    \sf \: \implies \: \sqrt{3} x + 7 = 0 \\  \\  \sf \:   \implies\sqrt{3} x =   \: - 7 \\  \\   \\  \:  \:  \:  \:  \:  \:  \: \boxed {\bold{ \ \:  x =  \frac{7}{ \sqrt{3} }}}  \\  \\  \implies \sf \:  x +  \sqrt{3}  = 0 \\   \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \boxed {\bold{  x =  -  \sqrt{3}} }

Similar questions