Math, asked by sdudi7976, 1 day ago

find the roots of the quadratic equation 15a^2x^2-16abx-15b^2=0​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm \: 15 {a}^{2} {x}^{2} - 16abx - 15 {b}^{2} = 0  \\

On splitting the middle terms, we get

\rm \: 15 {a}^{2} {x}^{2} - 25abx + 9abx - 15 {b}^{2}   = 0\\

\rm \: 5ax(3ax - 5b) + 3b(3ax - 5b) = 0 \\

\rm \: (3ax - 5b)(5ax  + 3b) = 0 \\

\rm \: 3ax - 5b = 0 \:  \: or \:  \: 5ax  + 3b = 0 \\

\rm \: 3ax  =  5b\:  \: or \:  \: 5ax =  -  3b \\

\bf\implies \:x = \dfrac{5b}{3a}  \:  \: or \:  \: x =  \:  -  \: \dfrac{3b}{5a}  \\

\rule{190pt}{2pt}

Concept Used :-

Splitting of middle terms :-

In order to factorize  ax² + bx + c we have to find numbers m and n such that m + n = b and mn = ac.

After finding m and n, we split the middle term i.e bx in the quadratic equation as mx + nx and get the required factors by grouping the terms.

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Answered by ӋօօղցӀҽҍօօղցӀҽ
10

 \huge{ \colorbox{black}{ \color{lime}{Añswèr}}}

 \large{ \sf \underline{Solution:-}}

Given quadratic equation is

 \sf \: 15 {a}^{2}  {x}^{2}  - 16abx - 15 {b}^{2}  = 0

On splitting the middle terms, we get

 \sf \:  {15a}^{2}  {x}^{2}  - 25abx + 9abx - 15 {b}^{2}  = 0

 \sf \: 5ax(3ax - 5b) + 3b(3ax - 5b) = 0

 \sf  \: (3ax - 5b)(5ax + 3b) = 0

 \sf \:  \: 3ax - 5b = 0 \: or \: 5ax + 3b = 0

 \sf \:  \: 3ax = 5b \: or \: 5ax =  - 3b

 \longmapsto \bf \: x =  \frac{5b}{3a}  \:  \:  \sf \: or \: x =  -  \frac{3b}{5a}

 \rule{1333pt}{1.8pt}

 \bf \pmb  {\frak{be \: brainly..}}

Similar questions