Math, asked by leonmegan14, 8 months ago

Find the roots of the quadratic equation 3x^2+ 2√5x –5 = 0

Answers

Answered by Anonymous
5

Solution:-

 \bf{ \small \: Equation \implies3 {x}^{2}  + 2 \sqrt{5}x - 5 }

To find root of quadratic equation ,Use Quadratic formula

 \implies \: x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

Comparing the equation with :-ax²+bx+c ,so

 \bf \: a = 3  \:  \: or \:  \: b = 2 \sqrt{5}  \:  \: or \: c =  \:  - 5

So put the value on Quadratic formula

x =  \frac{ - 2 \sqrt{5} \pm \sqrt{(2 \sqrt{5 } ) {}^{2} - 4 \times 3 \times  - 5 }  }{2 \times 3}

x =  \frac{ - 2 \sqrt{5} \pm \sqrt{4 \times 5  + 60}  }{6}

x =   \frac{ - 2 \sqrt{5}  \pm \sqrt{80} }{6}

x =  \frac{ - 2 \sqrt{5} + 4 \sqrt{5}  }{6}  \:  \: and \:  \:  \: x =  \frac{ - 2 \sqrt{5} - 4 \sqrt{5}  }{6}

x =  \frac{2 \sqrt{5} }{6}  \: and \: x =  \frac{ - 6 \sqrt{5} }{6}

x =  \frac{ \not2 \sqrt{5} }{ \not6}  \: and \: x =  \frac{ - \not 6 \sqrt{5} }{ \not6}

 \bf{ \boxed{Answer : \: root \: of\: x =  \frac{\sqrt{5} }{3}  \:  \: and \:  \:  -  \sqrt{5}  }}

Similar questions