Math, asked by abhijitnath858, 11 months ago

Find the roots of the quadratic equation 3x2-2√6x+2=0 by factorisation method

Answers

Answered by rishu6845
4

Answer:

(√3x-√2) (√3x-√2)

Step-by-step explanation:

3x^2-2√6x+2

=(√3x) ^2 - 2(√3x) (√2) +(√2)^2

=(√3x - √2)^2

= (√3x -√2) (√3x -√2)

Answered by Anonymous
16

Given,

the \: quadrtic \: polynomial \: is \: 3 {x}^{2}  -  2\sqrt{6} x + 2

To find out,

The roots of the polynomial.

Solution:

By factorisation method:

1)Here,first we have to split the middle term.

2)We have to find two numbers whose sum is -2√6 and product is 6.

3) -(√6) + -(√6) = -2√6

-(√6)×-(√6) = 6

 3{x}^{2}  -  \sqrt{6} x -  \sqrt{6} x + 2 = 0

3 {x}^{2}  -  \sqrt{2 \times 3} x -  \sqrt{2 \times 3} x + 2 = 0

3 {x}^{2}  -  (\sqrt{2})( \sqrt{3} )x - ( \sqrt{2} )( \sqrt{3} )x + 2 = 0

 \sqrt{3} x( \sqrt{3} x -  \sqrt{2} ) -  \sqrt{2} ( \sqrt{3} x -  \sqrt{2} ) = 0

( \sqrt{3} x -  \sqrt{2} )( \sqrt{3} x -  \sqrt{2} ) = 0

i)\sqrt{3} x -  \sqrt{2}  = 0  \:  \:  \:  \:  ii) \:  \: \sqrt{3} x =  \sqrt{2}  \:  \:  \:  \: iii)x =  \frac{ \sqrt{2} }{ \sqrt{3} }

i) \sqrt{3} x -  \sqrt{2}  = 0 \:  \:  \:  \: ii) \sqrt{3} x =  \sqrt{2}  \:  \:  \:  \:  \: iii)x \:  =  \frac{ \sqrt{2} }{ \sqrt{3} }

therefore \: the \: roots \: of \: the \: quadratic \: polynomial \: are \:  \frac{ \sqrt{2} }{ \sqrt{3} } and \:  \frac{ \sqrt{2} }{ \sqrt{3} }

Similar questions