Math, asked by rahmatullah913, 1 year ago

| Find the roots of the quadratic equation 6x2 - √2x - 2 = 0​

Answers

Answered by Shivmastaer
8

EXPLAINED CLEARLY IN THE PICTURE

HOPE IT HELPS.....

PLS MARK AS BRAINLIEST

Attachments:
Answered by BrainlyConqueror0901
6

{\bold{\underline{\underline{Answer:}}}}

\\{\bold{\therefore x=\frac{\sqrt{2}\pm\sqrt{50}}{12}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a quadratic equation.

• We have to find the value of x from the given quadratic equation :

 \underline{ \underline \bold{Given : }} \\  \implies x \in(6 {x}^{2}  -  \sqrt{2} x - 2 = 0) \\  \\ \underline{ \underline \bold{To \: Find : }} \\  \implies x = ?

• According to given question :

  \implies  6{x}^{2}  -  \sqrt{2}x - 2 = 0  \\  \\  \bold{Using \: Quadratic \: formula : } \\  \implies x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\  \implies x =  \frac{ - ( -  \sqrt{2}) \pm \sqrt{ {( \sqrt{2}) }^{2} - 4  \times 6 \times  - 2 }  }{2 \times 6}  \\  \\  \implies x =  \frac{ \sqrt{2}  \pm \sqrt{2  + 48} }{12}  \\  \\   \bold{\implies  x =  \frac{ \sqrt{2} \pm \sqrt{50}  }{12 } }

Similar questions