Math, asked by AsifAhamed4, 1 year ago

Find the roots of the quadratic equation by quadratic formula :

ab {x}^{2}  + ( {b}^{2}  - ac)x - bc = 0

❌NO SPAM ❌

BEST ANSWER WILL BE MARKED AS

Answers

Answered by Anonymous
44

 \huge \bf \green{Hey \:  there !! }

The given quadratic equation is abx² + ( b² - ac )x - bc = 0.

This is of the form Ax² + Bx + C = 0, where

A = ab, B = ( b² - ac ) and C = -bc .

•°• D = ( B² - 4AC )

= ( b² - ac )² + 4ab²c .

= b⁴ + a²c² - 2ab²c + 4ab²c .

= b⁴ + a²c² + 2ab²c .

= ( b² + ac )² > 0 .

Then, √D = ( b² + ac ) .


So, the given equation has real roots.

 \alpha  =  \frac{ -B +  \sqrt{D}  }{2A}  \\  \\  =  \frac{ - ( {b}^{2}  - ac) + ( {b}^{2} + ac) }{2ab} . \\  \\  =  \frac{ -   \cancel{{b}^{2}}  + ac +  \cancel{ {b}^{2}} + ac }{2ab}  \\  \\  =  \frac{2ac}{2ab}  =  \boxed{ \purple{ \frac{c}{b} .}} \\  \\ and \\  \\  \beta  = \frac{ -B  -   \sqrt{D}  }{2A} \\  \\  = \frac{ - ( {b}^{2}  - ac)  -  ( {b}^{2} + ac) }{2ab} \\  \\  =  \frac{ -  {b}^{2} +  \cancel{ac} -  {b}^{2}   -  \cancel{ac}}{2ab}  \\  \\  =  \frac{ - 2 {b}^{2} }{2ab}  =  \boxed{ \purple{ \frac{ - b}{a} .}}



✔✔ Hence, c/b and -b/a are the roots of the given equation ✅✅.




 \huge  \red{ \boxed{ \boxed{ \mathbb{THANKS}}}}



 \huge \bf \blue{ \#BeBrainly.}


AsifAhamed4: thank you so much!
AsifAhamed4: nice explanation
Anonymous: thanks
AsifAhamed4: :-)
kiranmai36: super answer
Anonymous: :-)
Anonymous: :-)
Answered by abhi569
54

Given equation : abx^2 + ( b^2 - ac ) x - bc = 0


On comparing the given equation with ax^2 + bx + c =0, we get the following information : -

a = ab ,  b = ( b^2 - ac ) , c = - bc


Now,

       Discriminant = b^2 - 4ac

          ⇒ ( b^2 - ac )^2 - 4( ab )( - bc )

          ⇒ b^4 + ( ac )^2 - 2acb^2 + 4acb^2

          ⇒ b^4 + ( ac )^2 + 2acb^2

         

From the factorization, we know that the value of a^2 + b^2 + 2ab is ( a + b )^2


          ⇒ ( b^2 + ac )^2



        Applying quadratic equation

  \mathsf{\implies x = \dfrac{-b\pm\sqrt{Discriminant}}{2a}}


Substituting the values from the equation

\implies x = \dfrac{-(b^2-ac )\pm \sqrt{(b^2+ac)^2 }}{ 2ab}\\\\\\\implies x =\dfrac{-b^2+ac\pm (b^2+ac)}{ 2ab}\\\\\\\implies x = \dfrac{ -b^2+ac+b^2+ac}{2ab}\quad\quad Or \quad \quad \dfrac{-b^2+ac-b^2-ac}{2ab}\\\\\\\implies x = \dfrac{2ac}{2ab} \quad\quad Or \quad\quad \dfrac{-2b^2}{2ab}\\\\\\\implies x = \dfrac{c}{b} \quad Or \quad - \dfrac{b}{a}


Therefore the value of x is c /  or - b / a


AsifAhamed4: :-)
abhi569: :-)
abhi569: :-)
kiranmai36: osm answer
abhi569: :-)
kiranmai36: hs
kiranmai36: ha
abhi569: :-)
Similar questions