Math, asked by samsunhussain2238, 1 month ago

find the roots of the quadratic equation by the method of completing the square: 4x2+x-3=0​

Answers

Answered by jha35230
1

Answer:

4X^2 + 4x -3x -3 =0

4x(x-1) - 3(x-1)=0

(x-1)(4x-3)=0

x=1 ,3/4

Answered by xSoyaibImtiazAhmedx
0

 \large {\color{red}{ \bold{4 {x}^{2}  + x - 3 = 0 }}}

 {\color{blue}{ \bold{ \implies \: 4 {x}^{2}  + x  =3}}}

 {\color{blue}{ \bold{ \implies \: {(2x)}^{2} +  2.2x. \frac{1}{4}   +  {( \frac{1}{4} )}^{2}  -  {( \frac{1}{4} )}^{2} =3}}}

 {\color{blue}{ \bold{ \implies {(2x +  \frac{1}{4} )}^{2} -  {( \frac{1}{16} )}=3}}}

 {\color{blue}{ \bold{ \implies {(2x +  \frac{1}{4} )}^{2}=3  + { \frac{1}{16} }}}}

 {\color{blue}{ \bold{ \implies {(2x +  \frac{1}{4} )}^{2}= { \frac{48 + 1}{16} }}}}

 {\color{blue}{ \bold{ \implies {(2x +  \frac{1}{4} )}^{2}= { \frac{49}{16} }}}}

 {\color{blue}{ \bold{ \implies  \sqrt{{(2x +  \frac{1}{4} )}^{2}}=   \ \: \sqrt{ \frac{49}{16} }}}}

 {\color{blue}{ \bold{ \implies  \sqrt{{(2x +  \frac{1}{4} )}^{2}}=  \sqrt{ \frac{ {7}^{2} }{{4}^{2} } }}}}

 {\color{blue}{ \bold{ \implies  {2x +  \frac{1}{4} }=  { \frac{ {7} }{{4} } }}}}   \:  \:  \:  \:  \:  \:  \:or \:   \:  \: {\color{blue}{ \bold{   {2x +  \frac{1}{4} }=   - { \frac{ {7} }{{4} } }}}}

 {\color{blue}{ \bold{ \implies  {2x  }=  { \frac{ {7} }{{4} }  -  \frac{1}{4} }}}}   \:  \:  \:  \:  \:  \:  \:or \:   \:  \: {\color{blue}{ \bold{   {2x}=   - { \frac{ {7} }{{4} }  -  \frac{1}{4} }}}}    \:

 {\color{blue}{ \bold{ \implies  {2x  }=  { \frac{ {6} }{{4} }   }}}}   \:  \:  \:  \:  \:  \:  \:or \:   \:  \: {\color{blue}{ \bold{   {2x}=    { \frac{ { - 8} }{{4} }  }}}}

 {\color{blue}{ \bold{ \implies  {x  }=  { \frac{ {6} }{{8} }   }}}}   \:  \:  \:  \:  \:  \:  \:or \:   \:  \: {\color{blue}{ \bold{   {x}=    { \frac{ { - 8} }{{8} }  }}}}

{\color{blue}{ \bold{ \implies  {x  }=  { \frac{ {3} }{{4} }   }}}}   \:  \:  \:  \:  \:  \:  \:or \:   \:  \: {\color{blue}{ \bold{   {x}=    {  - 1 }}}}

 \large \boxed{ \color{orange} \tt \bold{x =  \frac{3}{4}  \:  \:  \: and \:  \:  \:  - 1}}

Similar questions