Math, asked by pleasesolveit, 11 months ago

Find the roots of the quadratic equation
2x {}^{2} - 17x   + 21 = 0
By using factorisation, completing squares and quadratic formula ​

Answers

Answered by CaptainBrainly
14

GIVEN :

Quadratic equation : 2x² - 17x + 21 = 0

TO FIND :

Roots of Equation using completing Square method and Quadratic formula.

SOLUTION :

Method : Completing Square

2x² - 17x + 21 = 0

Divide both sides with 2.

 \frac{ {2x}^{2} }{2}  -  \frac{17x}{2}  +  \frac{21}{2}  = 0 \\  \\  {x}^{2}  -  \frac{17x}{2}  =  -  \frac{21}{2}

Add (17/4)² on both sides

 {x}^{2}  -  \frac{17x}{2}  +  {( \frac{17}{4} )}^{2}  =  -  \frac{21}{2}  + {( \frac{17}{4} )}^{2} \\  \\  {(x -  \frac{17}{4}) }^{2}  =  -  \frac{21}{2}  +  \frac{289}{16}  \\  \\ {(x -  \frac{17}{4}) }^{2} =  \frac{121}{16}  \\  \\ x -  \frac{17}{4}  =  \sqrt{ \frac{121}{16} }  \\  \\ x -  \frac{17}{4}  =   \frac{11}{4}  \\  \\ x =  \frac{11}{4}  +  \frac{17}{4}  \:  \: x =  -  \frac{11}{4}  +  \frac{17}{4}  \\  \\ x =  \frac{28}{4}  \:  \:  \:  \:  \: x =  \frac{6}{4}  \\  \\ x = 7 \:  \: x =  \frac{3}{2}

Therefore, zeroes are 7 and 3/2.

Method : Quadratic formula

2x² - 17x + 21

We know that,

Quadratic Formula :

x =  \frac{ - b  \: + \:  or \:  -  \:  \sqrt{ {b}^{2} - 4ac }  }{2a}

From the Quadratic equation,

a = 2

b = -17

c = 21

Substitute the values in the formula.

x =  \frac{ - ( - 17) +  \sqrt{ {( - 17)}^{2}  - 4(2)(21)} }{4}  \:  \: x =  \frac{ - ( - 17) -  \sqrt{ {( - 17)}^{2}  - 4(2)(21)} }{4}  \\  \\ x =  \frac{17 +  \sqrt{289 - 168} }{4}  \:  \: x =  \frac{17 -  \sqrt{289 - 168} }{4}  \\  \\ x =  \frac{17 +  \sqrt{121} }{4}  \:  \:  x =  \frac{17 -  \sqrt{121} }{4}  \\  \\ x =  \frac{17 + 11}{4} \:  \:  x =  \frac{17 - 11}{4}  \\  \\ x =  \frac{28}{4}  \:  \: x =  \frac{6}{4}  \\  \\ x = 7 \:  \:  \: x =  \frac{3}{2}

Therefore, the roots are 7 and 3/2.

Method : Factorisation

2x² - 17 + 21 = 0

Split the middle term

2x² - 14x - 3x +21= 0

2x(x - 7) - 3(x - 7) = 0

x - 7 = 0 2x - 3 = 0

x = 7 and x = 3/2.

Therefore, the roots are 7 and 3/2.

Similar questions