Math, asked by omji666666, 4 months ago

Find the roots of the quadratic equation
(x2 + 1)2 - x2 = 0​

Answers

Answered by zeesoftzs
0

Step-by-step explanation:

  {( {x}^{2}  + 1)}^{2}  -  {x}^{2} = 0 \\   ( {x}^{2}  + 1 + x)( {x}^{2}  + 1 - x) = 0 \\  {x}^{2}  + x + 1 = 0  \: \: or \:  \:  {x}^{2}  - x + 1 = 0 \\ from \: eq1 \\  {x}^{2}  + x + 1 = 0 \\  x =  \frac{ - 1 +  \sqrt{ - 3} }{2} ,x =  \frac{ - 1 -  \sqrt{ - 3} }{2}  \\

from \: eq2 \\  {x}^{2}  - x + 1 = 0 \\ x =  \frac{  1 +  \sqrt{ - 3} }{2} ,x =  \frac{ 1 -  \sqrt{ - 3} }{2}  \\

roots \: of \: eq \: are \\ x =  \frac{ - 1 +  \sqrt{ - 3} }{2} ,x =  \frac{ - 1 -  \sqrt{ - 3} }{2}  \\ x =  \frac{  1 +  \sqrt{ - 3} }{2} ,x =  \frac{ 1 -  \sqrt{ - 3} }{2}  \\

Similar questions