Math, asked by surabhdash3218, 9 months ago

Find the roots of the quadratic equations 2x²-x-4=0 by the method of completing the square.

Answers

Answered by mohan130150
2

FOLLOW ME

MARK AS BRAINLIST ANSWER

Attachments:
Answered by silentlover45
2

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: {2x}^{2} \: + \: {x} \: - \: {4} \: \: = \: \ {0}

\underline\mathfrak{To \: \: Find:-}

  •  find \: \: the \: \: roots \: \: of \: \: the \: \: equation \\ by \: \: completing \: \: the \: \: square \: \: method \: ?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: {2x}^{2} \: + \: {x} \: - \: {4} \: \: = \: \ {0}

\: \: \: \: \: \: \: \therefore \: Divide \: \: both \: \: side \: \: by \: \: {2}

\: \: \: \: \: \: \: \leadsto {x}^{2} \: + \: \frac{x}{2} \: - \: {2} \: \: = \: \ {0}

\: \: \: \: \: \: \: \therefore adding \: \: {(\frac{1}{4})}^{2} \: \: on \: \: both \: \: side.

\: \: \: \: \: \: \: \leadsto  \: \: {x}^{2} \: + \: \frac{x}{2} \: + \: \frac{1}{16} \: \: = \: \ {2} \: + \: \frac{1}{16}

\: \: \: \: \: \: \: \leadsto  \: \: {({x} \: + \: \frac{1}{4})}^{2} \: \: = \: \ \frac{{32} \: + \: {1}}{16}

\: \: \: \: \: \: \: \leadsto  \: \: {({x} \: + \: \frac{1}{4})}^{2} \: \: = \: \ \frac{33}{16}

\: \: \: \: \: \: \: \leadsto  \: \: {x} \: + \: \frac{1}{4} \: \: = \: \ \sqrt{\frac{33}{16}}

\: \: \: \: \: \: \: \leadsto  \: \: {x}  \: \: = \: \: \pm\sqrt{\frac{33}{16}} \: - \: \frac{1}{4}

\: \: \: \: \: \: \: \leadsto  \: \: {x}  \: \: = \: \: \frac{\sqrt{33} \: - \: {1}}{4} \: \: \: \: Or \: \: \: \: {x}  \: \: = \: \: \frac{ \: - \: \sqrt{33} \: + \: {1}}{4}

  • \: \: \: \: \: \: \: So, \: \: {x}  \: \: = \: \: \frac{\sqrt{33} \: - \: {1}}{4} \: \: \: \: Or \: \: \: \: {x}  \: \: = \: \: \frac{ \: - \: \sqrt{33} \: + \: {1}}{4}

__________________________________

Similar questions