Math, asked by nushukashifa, 1 year ago

Find the roots of the quadratic equations root 3x^2-2x-root3

Answers

Answered by anirudh17
14
check photo mark me brainliest
Attachments:
Answered by tardymanchester
8

Answer:

The roots are x=\frac{1+\sqrt{(1+3\sqrt{3}}}{3},\frac{1-\sqrt{(1+3\sqrt{3}}}{3}

Step-by-step explanation:

Given : The quadratic equation  y=3x^2-2x-\sqrt{3}

To find : The roots of the quadratic equation?

Solution :

Solving by discriminant method  

General form - ax^2+bx+c=0

D=b^2-4ac

Solution is x=\frac{-b\pm\sqrt{D}}{2a}

Equation is 3x^2-2x-\sqrt{3}=0

where a=3 , b=-2, c=\sqrt{3}

D=b^2-4ac

D=(-2)^2-4(3)(\sqrt{3})

D=4(1+3\sqrt{3})

Solution is x=\frac{-b\pm\sqrt{D}}{2a}

x=\frac{-(-2)\pm\sqrt{4(1+3\sqrt{3})}}{2(3)}

x=\frac{2\pm2\sqrt{(1+3\sqrt{3}}}{6}

x=\frac{1\pm\sqrt{(1+3\sqrt{3}}}{3}

Therefore, The roots are x=\frac{1+\sqrt{(1+3\sqrt{3}}}{3},\frac{1-\sqrt{(1+3\sqrt{3}}}{3}

Similar questions