Math, asked by ak78360140, 8 months ago

find the roots of x-1/x+2 +x-3/x-2= 11/8


by using quadratic formula​

Answers

Answered by Saby123
40

Find the roots of the given expression -

 \sf{ \dfrac{ x - 1 }{ x + 2 } + \dfrac{ x - 3 }{ x - 2 } = \dfrac{ 11 }{ 8 } }

Solution -

 \sf{ \dfrac{ x - 1 }{ x + 2 } + \dfrac{ x - 3 }{ x - 2 } = \dfrac{ 11 }{ 8 }  } \\ \\ \sf{ \implies { \dfrac{ (x - 1 )( x - 2 ) + ( x + 2 )( x - 3 ) }{ ( x + 2 )( x - 2 ) } = \dfrac{ 11 }{ 8 } }}  \\ \\ \sf{ \leadsto { \dfrac{ x^2 - 3x + 2 + x^2 - x - 6 }{ x^2 - 4 } = \dfrac{ 11 }{ 8 } }} \\ \\ \sf{ \mapsto { \dfrac{ 2x^2 - 4x - 4 }{ x ^ 2 - 4 } = \dfrac{ 11 }{ 8 } }} \\ \\ \sf{ \implies { \dfrac { x^2 - 2x - 2 }{ x^2 - 4 } = \dfrac{ 11 }{ 16 } }} \\ \\ \sf{ \leadsto { 11 ( x^2 - 4 ) = 16 ( x^2 - 2x - 2 ) }} \\ \\ \sf{ \mapsto { 11x^2 - 44 = 16x^2 - 32x - 32 }} \\ \\ \sf{ \implies { 5x^2 - 32x + 12 = 0 }}  \\ \\ \sf{ \bold { Quadratic \: Formula \: - }} \\ \\ \sf{ \implies { x = \dfrac{ -b \pm \sqrt { b^2 - 4ac } }{ 2a } }} \\ \\ \sf  {\bold { Substituting \: the \: given \: values \: - }} \\ \\ \sf{ \implies { x = \dfrac{ 32 \pm \sqrt{ 784 } }{ 10 } }} \\ \\ \sf{ \implies { x = \dfrac{ 32 \pm 28 }{ 10 } }} \\ \\ \sf{ \mapsto { x = 6 \: or \: 0.4 }} \\ \\ \sf{ \bold { This \: is \: the  \: required \: answer . }}

____________________________________

Answered by Anonymous
16

Answer:

x = 6 \: or \: x =  \frac{2}{5}

Given:

 \frac{x - 1}{x + 2}  +  \frac{x - 3}{x - 2}  =  \frac{11}{8}

Explanation:

Taking the LCM of LHS, we get:

 \frac{(x - 1) \times (x - 2) + (x - 3) \times (x + 2)}{(x - 2) \times (x + 2)}  =  \frac{11}{8}

We \: know \: that \: (a + b) \times (a - b) \: gives \:  {a}^{2}  -  {b}^{2}

After multiplying everything, we get:

 \frac{ {x}^{2}  - 2x- x+ 2 +  {x}^{2} - 3x + 2x - 6 }{ {x}^{2} - 4 }  =  \frac{11}{8}

Cancelling 2x and adding every like term, we get:

 \frac{2 {x}^{2} - 4x - 4 }{ {x}^{2} - 4 }  =  \frac{11}{8}

Cross multiplying LHS and RHS, we get:

16 {x}^{2}  - 32x - 32 = 11  {x}^{2}  - 44

Bringing RHS to LHS, we get:

5 {x}^{2}  - 32x + 12 = 0

Using Quadratic Formula or Sridharacharya Method:

x =  \frac{ - b \: \pm \:  \sqrt{ {b}^{2} - 4ac} }{2a}

where \: a \: , \: b \:  and \:  c \:  are \:  three  \: constants \:  in \: the  \: equation  \:

a {x}^{2}  + bx + c  = 0

Here,  \:

a=5 \: \:  \:  \: b=-32 \:  \:  \:  \: </p><p>c=12 \: </p><p>

Substituting the value of a, b and c in formula, we get:

x =  \frac{  - ( - 32) \: \pm \:  \sqrt{( - 32 )^{2}  - 4 \times 5 \times 12}  }{2 \times 5}

 x = \frac{32 \: \pm \:  \sqrt{1024 - 240} }{10}

x =  \frac{32 \: \pm \:  \sqrt{784} }{10}

x =  \frac{32 \: \pm \: 28}{10}

x =  \frac{32 + 28}{10} \: or \: x =  \frac{32 - 28}{10}

x =  \frac{60}{10} \: or \: x = \frac{4}{10}

x = 6 \: or \: x =  \frac{2}{5}

x = 6 \: or \: x = 0.4

Additional Information:

In some questions, the square root is not perfect. So we will solve it by division method.

In the quadratic formula, we place the value of a, b and c as they are given in the quadratic equation.

If in the question, the value of x cannot be negative, so we neglect the negative value of x.

We can also use other methods to solve the equation.

Similar questions