find the roots of x2+6x -112=0
Answers
Answer:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
+
6
−
1
1
2
=
0
x^{2}+6x-112=0
x2+6x−112=0
=
1
a={\color{#c92786}{1}}
a=1
=
6
b={\color{#e8710a}{6}}
b=6
=
−
1
1
2
c={\color{#129eaf}{-112}}
c=−112
=
−
6
±
6
2
−
4
⋅
1
(
−
1
1
2
)
√
2
⋅
1
x=\frac{-{\color{#e8710a}{6}} \pm \sqrt{{\color{#e8710a}{6}}^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-112}})}}{2 \cdot {\color{#c92786}{1}}}
x=2⋅1−6±62−4⋅1(−112)
PLEASE FOLLOW ME And MARK AS BRAINLIST HOPE MY ANSWERS IS CORRECT
Step-by-step explanation:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
+
6
−
1
1
2
=
0
x^{2}+6x-112=0
x2+6x−112=0
=
1
a={\color{#c92786}{1}}
a=1
=
6
b={\color{#e8710a}{6}}
b=6
=
−
1
1
2
c={\color{#129eaf}{-112}}
c=−112
=
−
6
±
6
2
−
4
⋅
1
(
−
1
1
2
)
√
2
⋅
1
x=\frac{-{\color{#e8710a}{6}} \pm \sqrt{{\color{#e8710a}{6}}^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-112}})}}{2 \cdot {\color{#c92786}{1}}}
x=2⋅1−6±62−4⋅1(−112)
2
Simplify
3
Separate the equations
4
Solve
Solution
=
8
=
−
1
4