Math, asked by sanjayhemant, 3 months ago

find the roots of x2+6x -112=0​

Answers

Answered by sajjanjakhar381
3

Answer:

Use the quadratic formula

=

±

2

4

2

x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

x=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

2

+

6

1

1

2

=

0

x^{2}+6x-112=0

x2+6x−112=0

=

1

a={\color{#c92786}{1}}

a=1

=

6

b={\color{#e8710a}{6}}

b=6

=

1

1

2

c={\color{#129eaf}{-112}}

c=−112

=

6

±

6

2

4

1

(

1

1

2

)

2

1

x=\frac{-{\color{#e8710a}{6}} \pm \sqrt{{\color{#e8710a}{6}}^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-112}})}}{2 \cdot {\color{#c92786}{1}}}

x=2⋅1−6±62−4⋅1(−112)

PLEASE FOLLOW ME And MARK AS BRAINLIST HOPE MY ANSWERS IS CORRECT

Answered by antonypravin412
1

Step-by-step explanation:

Use the quadratic formula

=

±

2

4

2

x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

x=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

2

+

6

1

1

2

=

0

x^{2}+6x-112=0

x2+6x−112=0

=

1

a={\color{#c92786}{1}}

a=1

=

6

b={\color{#e8710a}{6}}

b=6

=

1

1

2

c={\color{#129eaf}{-112}}

c=−112

=

6

±

6

2

4

1

(

1

1

2

)

2

1

x=\frac{-{\color{#e8710a}{6}} \pm \sqrt{{\color{#e8710a}{6}}^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-112}})}}{2 \cdot {\color{#c92786}{1}}}

x=2⋅1−6±62−4⋅1(−112)

2

Simplify

3

Separate the equations

4

Solve

Solution

=

8

=

1

4

Similar questions