Physics, asked by shreyafaldessai, 11 months ago

Find the scalar and vector products of two vectors a = (2i – 3j^ + 4k) and b = (î – 2j +3k).​

Answers

Answered by Anonymous
7

SoluTion:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given -

⠀⠀⠀⠀⠀⠀⠀⠀

  • \sf{\vec{a}} = \sf{2 \hat{i} - 3 \hat{j} + 4 \hat{k}}

  • \sf{\vec{b}} = \sf{\hat{i} - 2 \hat{j} + 3 \hat{k}}

⠀⠀⠀⠀⠀⠀⠀⠀

Scaler product -

⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\vec{a}.\vec{b}} = \sf{\bigg(2 \hat{i} - 3 \hat{j} + 4 \hat{k}\bigg).} \sf{\bigg(\hat{i} - 2 \hat{j} + 3 \hat{k}\bigg)}

⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{\vec{a}.\vec{b}} = \sf{2+6+12} ⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{\vec{a}.\vec{b}} = \sf{20}

⠀⠀⠀⠀⠀⠀⠀⠀

Vector product -

⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\vec{a} \times \vec{b} =}{\left| \begin{tabular}{ccc} $ \sf \hat{i} $ & $ \sf \hat{j} $ & $ \sf \hat{k} $ \\ \sf 2 & \sf -3 & \sf 4 \\ \sf 1 & \sf -2 & \sf 3\end{tabular} \right|}

⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{\vec{a} \times \vec{b}} = \sf{\hat{i} ( -9 + 8) - \hat{j} (6-4) + \hat{k} (-4+3)}

⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf{\vec{a} \times \vec{b}} = \sf{ - \hat{i} - 2 \hat{j} - \hat{k}}

Similar questions