Math, asked by sheebatreesa5946, 20 days ago

find the second derivative of y= x/square root of x-1​

Answers

Answered by TrustedAnswerer19
4

Answer:

Your answer is given in the attachment

To learn more : ( Same type)

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: y =  \frac{ {x}^{2} }{ \sqrt{x - 1} }  \\ First \:\:derivatives\\  \sf \: \implies \:  \frac{dy}{dx}  =  \frac{d \:  \: ( \frac{ {x}^{2} }{ \sqrt{x - 1} }) }{dx}  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ \sqrt{x - 1} \times  \frac{d \:  {x}^{2} }{dx}  \:  \:  -   \:  \:  {x}^{2} \times  \frac{d \:  \:  \sqrt{x - 1} }{dx}  }{ ({ \sqrt{x - 1} })^{2} }  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =   \frac{2x \sqrt{x - 1} \:  \:   -  \:  \:  {x}^{2}  \times  \frac{1}{2 \sqrt{x - 1} } }{x - 1}  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{2x}{ \sqrt{x - 1} }  -  \frac{ {x}^{2} }{2 {(x - 1)}^{ \frac{3}{2} } }  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \therefore \:  \frac{dy}{dx}   =  \frac{x(3x - 4)}{2 {(x - 1)}^{ \frac{3}{2} } }  \\  \\ second \: derivatives \\  \\   \sf \: \frac{ {d}^{2}  y }{d {x}^{2} }  =  \frac{d \:  \:   \{\frac{x(3x - 4)}{2 {(x - 1)}^{ \frac{3}{2} } } \}}{dx}    \\  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1}{2} \times  \frac{d \:  \{ \frac{x(3x - 4)}{ {(x - 1)}^{ \frac{3}{2} } }  \}}{dx}  \\ \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \frac{ \frac{ {(x - 1)}^{ \frac{3}{2} } \times  \{ \frac{d \: x(3x - 4)}{dx} - x(3x - 4) \frac{d {(x - 1)}^{ \frac{3}{2} }  }{dx}    \}}{( { {(x - 1)}^{ \frac{3}{2} } })^{2} } }{2}  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ {x - 1)}^{ \frac{3}{2} }  \times  \{ (3x - 4)\frac{d \: x}{dx}  + x \frac{d \: (3x - 4)}{dx}  \} - x(3x - 4) \frac{3}{2} (x - 1)^{ \frac{1}{2} }   \times \frac{d(x - 1)}{dx} }{2 {(x - 1)}^{3} }  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ {(x - 1)}^{ \frac{3}{2} }  \times  \{x(3 + 0) + 3x - 4 \} -   \frac{x(3x - 4) \times 3(1 + 0) \times  \sqrt{x - 1} }{2} }{2 {(x - 1)}^{3} }  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ {(x - 1)}^{ \frac{3}{2} }(6x - 4) - 3 \sqrt{x - 1}  \times x \times (3x - 4) }{2 {(x - 1)}^{3} }  \\\sf \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \: answer

Attachments:
Similar questions