Math, asked by saurabh9314, 1 year ago

Find the side , height and perimeter of an equilateral triangle whose area is 9√12

Answers

Answered by mathdude200
1
please find the attachment
Attachments:
Answered by ButterFliee
1

\large{\underline{\underline{\mathrm{\blue{APPROPRIATE \: QUESTION :-}}}}}

Find the side , height and perimeter of an equilateral triangle whose area is 9√12 cm²

\huge{\underline{\underline{\mathrm{\blue{GIVEN:-}}}}}

  • Area of an equilateral triangle is 912 cm²

\huge{\underline{\underline{\mathrm{\blue{NEED\:TO\:FIND:-}}}}}

Find the side, height and perimeter of Triangle = ?

\huge{\underline{\underline{\mathrm{\blue{FORMULA \:USED:-}}}}}

\large{\boxed{\bf{\red{Area \:of\:Equilateral\:Triangle = \frac{\sqrt{3}}{4}\times{(Side)}^{2}}}}}

\large{\boxed{\bf{\red{Height\:of\:Equilateral\:Triangle = \frac{\sqrt{3}}{2}\times Side}}}}

\large{\boxed{\bf{\red{Perimeter \:of\:Equilateral\:Triangle = 3\times Side}}}}

\huge{\underline{\underline{\mathrm{\blue{SOLUTION:-}}}}}

We have given that, the area of an equilateral triangle is 9√12 cm²

We need to find the side of an equilateral triangle

Putting the values in the formula

\large\bf{Area\: of \: Equilateral \:Triangle = \frac{\sqrt{3}}{4}\times{(Side)}^{2}}

\implies\rm{9\sqrt{12} =\frac{\sqrt{3}}{4}\times{(Side)}^{2}}

\implies\rm{9\sqrt{2\times2\times3} =\frac{\sqrt{3}}{4}\times{(Side)}^{2}}

\implies\rm{9\times2\sqrt{3} =\frac{\sqrt{3}}{4}\times{(Side)}^{2}}

\implies\rm{18\sqrt{3} =\frac{\sqrt{3}}{4}\times{(Side)}^{2}}

\implies\rm{{(Side)}^{2} =\large\frac{18\sqrt{3}\times 4}{\sqrt{3}}}

\implies\rm{{(Side)}^{2} = 72\times\cancel\dfrac{\sqrt{3}}{\sqrt {3}}}

\implies\rm{{(Side)}^{2} = 72}

\implies\rm{Side = \sqrt{72}}

\implies\large\rm\green{Side =6 \sqrt{2}\: cm}

Thus, the side of an equilateral triangle is 6√2 cm

Now, we have to find the height of an equilateral triangle

Putting the values in the formula

\large\bf{Height\: of \: Equilateral \:Triangle = \frac{\sqrt{3}}{2}\times Side}

\implies\rm{ Height = \frac{\sqrt{3}}{2}\times 6\sqrt{2}}

\implies\rm{ Height =\cancel\dfrac{6\sqrt{6}}{2}}

\implies\large\rm\green{ Height = 3\sqrt{6} \: cm}

Thus, the height of an equilateral triangle is 3√6 cm

Now, we have to find the Perimeter of an equilateral triangle

Putting the values in the formula

  • Since, all sides of an equilateral triangle are equal in length, So

\large\bf{Perimeter \: of \: Equilateral \:Triangle = 3\times Side}

\implies\rm{ Perimeter = 3\times 6\sqrt {2}}

\implies\large\rm\green{ Perimeter = 18\sqrt {2}\: cm}

Thus, the perimeter of an equilateral triangle is 18√2 cm

\large{\underline{\underline{\mathrm{\blue{FINAL \: ANSWER :-}}}}}

\large{\boxed{\boxed{\bf{\red{Perimeter = 18\sqrt{2}\: cm}}}}}

\large{\boxed{\boxed{\bf{\red{Side = 6\sqrt{2}\: cm}}}}}

\large{\boxed{\boxed{\bf{\red{Height = 3\sqrt6\: cm}}}}}

Attachments:
Similar questions