Math, asked by jeevitha70, 2 months ago

find the simple interest on Rs 12000 and 2years at 6℅per annum​

Answers

Answered by jugalpatel1106
1

Answer:

hey mate watch your ans

plz mark me as brain list

Attachments:
Answered by Anonymous
9

given \:

   \\principle  \:  \:  \:  \:  \: \: (p) \:  \:  \:  =  \: r s \: 12000 \\ simple \: interest \: rate \:  =  \: 6\%p.a \\ time  \:  \: \: period  \:  \: \: n \:  \:  =  \: 2 \:  \:  \: years

 \: therefore \:

simple \: interest \: si \: at \: 6\% \: for \: 2 \\ years \:  = 2 \times  \frac{12000 \times 6}{100}  \\  =rs .1440

if \: he \: would \: have \: borrowed \: it \: at  \\ a \: compound \: interest \: rate \: (r \: ) =  \\ 6\%p.a \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

we \: know \: amount \: when \: interest \:  \\ is \: compounded \: anually \: (a) =  \:  \:  \:  \:  \:  \ \:  \:  \:  \\ a = p(1 +   \frac{r}{100} ) ^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ therefore \: a = 1200(1 +  \frac{6}{100} )  ^{2} \:  \:  \:  \:  \:  \:  \\   \:  \:  \:  \: = rs \: 13483.20

therefore \: compound \: interest \:ci =  \\ a - p \:  = r \:  (13483.20 - 12000) \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  = rs.1483.20 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ therefore \:  \: he \: would \: have \: to \: pay \:  \:  \:  \:  \:  \:  \:  \\ rs(1483.20 - 1440 = rs \: 43.20 \: extra \:  \:

Similar questions