Math, asked by aathi2007, 3 months ago

the radius of a sector is 21cm and its central angle 120degree. find the length of the arc​

Answers

Answered by richapariya121pe22ey
3

Answer:

44 cm

Step-by-step explanation:

Length of arc =

 \frac{ \alpha }{360}  \times 2\pi  \times r  \\  =  \frac{120}{360}  \times 2 \times  \frac{22}{7}  \times 21 \\  =  \frac{1}{3}  \times 2 \times 22 \times 3 \\  = 2 \times 22 = 44

Answered by Anonymous
8

given \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \\ in \: a \: given \: circle  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\: \:  \\ the \: radius \: of \: the \: sector \: is \: 21cm \: and \\ its \: central \: angle \: is \: 120 \: degree \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: . \\

r = 21cm

 = 120 \: degree

 \:  \:  \:  \:  \:  \: to  \: find \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\ \:  the \: length \: ofthe \: arc \: of \: a \: circle \: .

 \:  \:  \: solution \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ length \: of \: the \: arc \:  =  \frac{0}{360} degree \:  \times 2\pir

l= 120°/360°x2πr(21)

l= 1/3 x2 x22/x21

l= 1/3 x2 x22/x21

l=2x22

l= 44

Therefore, the length of the arc of the circle is 44 cm.

hope it helps u

pls Mark me as brainliest

Similar questions