Math, asked by 7cnishikumari25, 5 months ago

Find the sixth term of expansion of
(y^1/2 + x^1/2) , if the binomial
cefficient of the third term from
the end is 45.

Answers

Answered by aryan073
5

Given :

•The binomial coefficient of the third term from the end =45

• Given expansion =\bf{(y^{\dfrac{1}{2}}+x^{\dfrac{1}{2}})}

To Find :

•The sixth term of expansion of \bf{y^{\dfrac{1}{2}}+x^{\dfrac{1}{2}}=?}

Solution :

⇒Given expressions is \red{\bf{y^{\dfrac{1}{2}}+x^{\dfrac{1}{2}}}}

⇒Given that ,

•Binomial coefficient of the third term from the end =45

\\ \implies\sf{^{n}C_{n-2}=45}

\\ \implies\sf{^{n}C_{2}=45}

\\ \implies\sf{\dfrac{n(n-1)(n-2)!}{2!(n-2)!}=45}

\\ \implies\sf{n(n-1)=90}

\\ \implies\sf{n^{2}-n-90=0}

\\ \implies\sf{(n-10)(n+9)=0}

\\ \implies\sf{n=10  \: \: \quad \: n=-9}

Now, sixth term

\\ \implies\sf{^{10}C_{5}(y^{\dfrac{1}{2}})^{10-5}(x^{\dfrac{1}{3}})^{5}}

\\ \implies\sf{225y^{\dfrac{5}{2}}.x^{\dfrac{5}{3}}}

•the sixth term is

\\ \red\bigstar\boxed{\sf{225y^{\dfrac{5}{2}} . x^{\dfrac{5}{3}}}}

Similar questions