Math, asked by Anonymous, 6 days ago

Find the slant height of a cone whose, Base radius = 14 cm, height 0.4 m Base diameter =70 cm, curved surface area =4070 cm².

- Take care of the units.
- Thank you :)) ​

Answers

Answered by Sen0rita
31

 \sf \: Given \: \begin{cases}  \sf \: base \: radius \: of \: a \: cone =  \bold{14 cm} \\  \\  \sf \: height \: of \: the \: cone  = 0.4 m  =  \:  \bold{40cm} \\  \\  \sf \: base \: diameter \: of \: the \: cone =  \bold{70cm} \\  \\  \sf \: curved \: surface \:area \: of \: the \: cone =  \bold{4070cm {}^{2} } \end{cases}

 \:

Here we've to find the slant height of the cone.

__________________________________

As we know that, formula for finding the curved surface area of a cone is :

 \:

  \boxed{{ \sf \: curved \: surface \: area \: of \: cone =  \pi \: rl}}

  • Let's put the values in the given formula.

 \:

 \sf :  \implies \:   \pi \: rl = 4070

 \:

 \sf :  \implies \: l =  \dfrac{4070}{ \pi \:  \times 35}

 \:

 \sf :  \implies \: l =  \dfrac{4070}{110}

 \:

 \sf :  \implies \:  \boxed{ \sf \: l =37 }

 \:

_________________________

 \:

Now, We know that formula for finding slant height is :

 \:

 \boxed{ \sf \:(slant \: height) {}^{2}  + (radius) {}^{2} +  (height) {}^{2}  }

  • Let's put the values in the given formula.

 \:

 \sf :  \implies \: (l) {}^{2}  = (14) {}^{2}  + (40) {}^{2}

 \:

 \sf :  \implies \: l =  \sqrt{(14) {}^{2} + (40) {}^{2}  }

 \:

 \sf :  \implies \: l =  \sqrt{196 + 1600}

 \:

 \sf :  \implies \: l =  \sqrt{1796}

  \:

 \sf :  \implies \:   \boxed{ \sf \: l = 42.37cm}

Answered by XxLUCYxX
31

 \color{lime} \bold{Given,} \\  \\  \sf \bull \: Base \: radius \:  =  \: 14 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \\  \\  \sf \bull \:Base \: diameter \:  =  \: 70 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \bull \: Height \:  =  \: 0.4 \: m \: or \: 40 \: cm  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\   \sf \bull \: Curved \: surface \: area \:  =  \: 4070 \:  {cm}^{2}

 \color{red} \bold{To\:find}

 \sf \bull The\:slant\:height\:(l)

 \color{skyblue} \bold{Solution,}

 \sf \: Let,\:  \\  \\  \sf \:\bull  \:  Base \: radius \:  =  \: r_1  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\   \\  \sf \bull \: Height \:  =  \: h \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \bull \: Base \: diameter \:  =  \:  \frac{d}{2}  \:  =  \: r_2

 \bf We\:know\:that,

 \bf \implies \:CSA\:=\:\pi r  l

 \bf \: Diameter \:  =  \: 70 \: cm \:  \:  \:  \:  \\  \\ \bf Radius \: (r_2) \:  =  \:  \frac{70}{2}   \:  \:  \:  \: \\  \\ \bf Radius \: (r_2) \:  =  \:35 \: cm

  \color{deeppink}\bold{Substituting \: the \: values,}  \:  \:  \:  \:  \:  \\  \\  \bf \:  \implies \: 4070 \:  =  \:  \frac{22}{7}  \:  \times  \: 35 \:  \times  \: l \\  \\  \bf \implies \: 4070 \:  \times  \: 110 \:  \times  \: l \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf \implies \: l \:  =   \:  \frac{4070}{110}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bf \implies \: l \:  =  \: 37 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \color{aqua} \bf \: Hence \: the \: slant \: height \: of \: the \: cone \: is \: 37 \: cm.

 \color{lime}\rule{200000000 pt}{2pt}

 \large \bold{Additional\: Information}

 \begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\cal{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} = \dfrac{4}{3}\pi {r}^{3} }\\ \\ \bigstar \: \bf{Volume_{(cube)} = {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions