Math, asked by jbvbjkhhh3900, 2 months ago

find the smallest integer n>1 such that the sum 1+2+...+n is a perfect square

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{1+2+3+. . . . . . +n is a perfect square}

\textbf{To find:}

\textsf{The smallest integer satisfying the given condition}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{1+2+\;.\;.\;.\;.+n}

\mathsf{=\dfrac{n(n+1)}{2}}

\mathsf{But,\;as\;per\;given\;data,}

\mathsf{\dfrac{n(n+1)}{2}\;is\;a\;perfect\;square}

\mathsf{For\;n=2,\;\dfrac{2{\times}3}{2}=3}

\mathsf{For\;n=3,\;\dfrac{3{\times}4}{2}=6}

\mathsf{For\;n=4,\;\dfrac{4{\times}5}{2}=10}

\mathsf{For\;n=5,\;\dfrac{5{\times}6}{2}=15}

\mathsf{For\;n=6,\;\dfrac{6{\times}7}{2}=21}

\mathsf{For\;n=7,\;\dfrac{7{\times}8}{2}=28}

\mathsf{For\;n=8,\;\dfrac{8{\times}9}{2}=36,\;a\;perfect\;square}

\therefore\underline{\textsf{The smallest value of n satisfying the given condition is 8}}

\textbf{Find more:}

The smallest value of x that satisfies the equation 2^2x - 8 * 2^x = -12 is ?

https://brainly.in/question/17096909

Similar questions