Math, asked by senriya4347, 1 year ago

Find the smallest number by which 1152
must be divided so that the quotient became a perfect square

Answers

Answered by Anonymous
11
\sf{\underline{By\:Prime\:Factorization\:of\:1152:}}

\sf{\underline{We\:get:}}

\begin{array}{r | l} 2 & 1152 \\ \cline{2-2} 2 & 576 \\ \cline{2-2} 2 & 288 \\ \cline{2-2} 2 & 144 \\ \cline{2-2} 2 & 72 \\ \cline{2-2} 2 & 36 \\ \cline{2-2} 2 & 18 \\ \cline{2-2} 3 & 9 \\ \cline{2-2} 3 & 3 \\ \cline{2-2} & 1 \end{array}

\sf{\underline{Here:}}

2 does not form, a pair of square.

\sf{\underline{So:}}

It (2) must be divided by 1152 to make it a perfect square.

\sf{\underline{Therefore:}}

\boxed{\sf{ \frac{1152}{2} = 576}}

\sf{\underline{So:}}

\boxed{\sf{576 = (2 \times 2) \times (2 \times 2) \times (2 \times 2) \times (3 \times 3)}}

\implies  \sf{ 2 \times 2 \times 2 \times 3}

\implies \sf{ 4 \times 6}

\implies \sf{ 24}

\sf{\underline{Therefore:}} The smallest number is 24.
Answered by abdullah060903112
0

Answer:

24

Step-by-step explanation:

Similar questions