Math, asked by rameshmuthu919, 3 months ago

find the solution to the given pair of linear equations by graphical method 2x+y=5,x+y=4

Answers

Answered by samantarachandini
0

Answer:

hshdjfkcjzuflfksidkdjfkfhfjfkfkgkc

Step-by-step explanation:

rofkfkvkcncjvkgkvo

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of linear equations are

  • 2x + y = 5

  • x + y = 4

Consider

  • The linear equation 2x + y = 5

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:2 \times 0 + y = 5

\rm :\longmapsto\: 0 + y = 5

\bf\implies \:y = 5

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:2x + 0 = 5

\rm :\longmapsto\:2x = 5

\bf\implies \:x = 2.5

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 5 \\ \\ \sf 2.5 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 5) & (2.5 , 0)

➢ See the attachment graph. (Blue line)

Consider,

  • The line x + y = 4

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:0 + y = 4

\bf\implies \:y = 4

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:x + 0 = 4

\bf\implies \:x = 4

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 4 \\ \\ \sf 4 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 4) & (4 , 0)

➢ See the attachment graph. (Red line)

Hence

  • From graph, we conclude that x = 1 and y = 3

Attachments:
Similar questions