Math, asked by nandhinee40, 7 months ago

find the square of root of 64x^4-16x^3+17x^2x+1​

Answers

Answered by jameshul471
35

Before proceeding to find the square root of a polynomial, one has to ensure that the degrees of the variables are in descending or ascending order.

Step-by-step explanation:

please Mark me as brainlest Pleazzzzzz.

Attachments:
Answered by SteffiPaul
4

Therefore the square root of the given polynomial 64x⁴ - 16x³ + 17x² - 2x + 1 is '8x² - x + 1'.

Given:

Polynomial: 64x⁴ - 16x³ + 17x² - 2x + 1 = 0

To Find:

The square root of 64x⁴ - 16x³ + 17x² - 2x + 1 = 0

Solution:

The given question can be answered as shown below.

By dividing as shown below we get,

    8x² ) 64x⁴ - 16x³ + 17x² - 2x + 1 ( 8x²

            64x⁴

            (-)                                    

         16x² - x ) - 16x³ + 17x² ( -x

                         - 16x³ + x²

                          (-)_                    

        16x² - 2x + 1 ) 16x² - 2x + 1 ( 1

                               16x² - 2x + 1

                                  (-)                                                              

                                         0

Adding the quotients = 8x² - x + 1

⇒ 64x⁴ - 16x³ + 17x² - 2x + 1 = ( 8x² - x + 1 )²

⇒ √ ( 64x⁴ - 16x³ + 17x² - 2x + 1 ) = √ ( ( 8x² - x + 1 )² = 8x² - x + 1

Therefore the square root of the given polynomial 64x⁴ - 16x³ + 17x² - 2x + 1 is '8x² - x + 1'.

#SPJ2

Similar questions