Math, asked by shibaprasadmajhi63, 7 months ago

Find the square of
 \sqrt{9 + 40 i \ }  +  \sqrt{9 - 40i}

Answers

Answered by Anonymous
6

{\red {{\bold{ \huge \dag }}\bold {\huge{{\mathcal {\underline{Answer}}}} \dag}}}

 \star \:  \underline \blue{solution} \blue{ : }

y =  \sqrt{9 + 40i}  +   \sqrt{9 - 40i}  \:  \:  \:  \:  \:  \:  \:  \:  \bold{let}

  \longrightarrow \: {y}^{2}  =  {(\sqrt{9 + 40i}  +   \sqrt{9 - 40i})}^{2}

 \longrightarrow \:  {y}^{2}  = 9 + 40i + 9 - 40i + 2 \sqrt{(9 + 40i)(9 - 40i)}

\longrightarrow \:  {y}^{2}  = 18 + 2 \sqrt{1681}

 \longrightarrow \:  \boxed {\mathfrak{ {y}^{2}  = 100}}

\bold {\bold{\boxed {\boxed{///MARK \:  IT  \: BRAINLIEST///}}}}

Similar questions