Math, asked by debansh45, 3 months ago

Find the square root of 1+i​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

z = 1 + i

z =  \sqrt{2} ( \frac{1}{ \sqrt{2} }  +  \frac{i}{ \sqrt{2} })  \\

 \implies \: z =  \sqrt{2} (e^{ \frac{i\pi}{4} } ) \\

 \implies \sqrt{z}  =  {2}^{ \frac{1}{4} } . {e}^{i \frac{\pi}{8} }

 =  {2}^{ \frac{1}{4} } .( \cos( \frac{\pi}{8} )  + i \sin( \frac{\pi}{8} ) )

 = ±{2}^{ \frac{1}{4} } .(  \sqrt{ \frac{ \sqrt{2} + 1 }{2 \sqrt{2} } }  + i  \sqrt{ \frac{ \sqrt{2} - 1 }{2 \sqrt{2} } } )

 = ± \frac{1}{ \sqrt{2} } ( \sqrt{ \sqrt{2}  + 1}  + i \sqrt{ \sqrt{2}  - 1} )

Similar questions