Math, asked by kameswar60, 1 month ago

If secθ + tan θ = p, then what is the value of secθ − tan θ ?

Answers

Answered by Anonymous
1

Given secA + tan A = p

 \small \bold{Recall \:  the \:  identity, \:  sec^2A – tan^2A = 1}

⇒ (secA + tan A)(secA – tanA) = 1

⇒ p × (secA – tanA) = 1

∴ (secA – tanA) = 1/p

Answered by dmkjn1999gmailcom
1

Answer:

1/p

Step-by-step explanation:

Sec^2-tan^2=1

(Sec-tan).(sec+tan)=1

(Sec-tan).p=1

Sec-tan=1/p

Similar questions