Math, asked by Gurmuskansingh, 1 year ago

Find the square root of

Attachments:

Answers

Answered by AbhijithPrakash
6

Answer:

\sqrt{84\dfrac{37}{121}}=9\dfrac{2}{11}\quad \left(\mathrm{Decimal:\quad }\:9.18182\dots \right)

Step-by-step explanation:

\sqrt{84\dfrac{37}{121}}

\mathrm{Convert\:mixed\:numbers\:to\:improper\:fractions}

\sqrt{84\dfrac{37}{121}}

\mathrm{Convert\:mixed\:numbers\:to\:improper\:fraction:}\:a\dfrac{b}{c}=\dfrac{a\cdot \:c+b}{c}

84\dfrac{37}{121}=\dfrac{84\cdot 121+37}{121}=\dfrac{10201}{121}

\sqrt{\dfrac{10201}{121}}

\mathrm{Apply\:radical\:rule\:}\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0

=\dfrac{\sqrt{10201}}{\sqrt{121}}

\textrm{We know that }\sqrt{121}=11\textrm{, and,}\sqrt{10201}=101

=\dfrac{101}{11}

\mathrm{Convert\:improper\:fractions\:to\:mixed\:numbers}

\dfrac{101}{11}=9\quad \mathrm{Remainder}\quad \:2

\mathrm{Convert\:to\:mixed\:number:\:Quotient\dfrac{Remainder}{Divisor}}

\dfrac{101}{11}=9\dfrac{2}{11}

=9\dfrac{2}{11}


shikhaku2014: Mind blowing answer bro
AbhijithPrakash: Thanks!!
shikhaku2014: wello
AbhijithPrakash: ^_^
shikhaku2014: :)
Similar questions