Math, asked by guptaananya2005, 9 days ago

FIND THE SQUARE ROOT OF i

Please dont spam

Answers

Answered by Altoz
0

Answer:

 \sqrt{i}

is the answer.

Step-by-step explanation:

mark brainliest

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\: \sqrt{i} = x + iy -  -  - (1)

On squaring both sides, we get

\rm :\longmapsto\:i =  {(x + iy)}^{2}

\rm :\longmapsto\:i =  {x}^{2} +  {i}^{2} {y}^{2} + 2xyi

\rm :\longmapsto\:i =  {x}^{2}  -  {y}^{2} + 2xyi

So, on comparing real and Imaginary parts, we get

\rm :\longmapsto\: {x}^{2} -  {y}^{2} = 0 -  -  -  - (2)

and

\rm :\longmapsto\:2xy = 1 -  -  - (3)

We know, that

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  \sqrt{ {[ {x}^{2} -  {y}^{2} ]}^{2} +  {(2xy)}^{2}}

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  \sqrt{ {[0]}^{2} +  {(1)}^{2}}

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  \sqrt{ {0 + 1}}

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  \sqrt{ {1}}

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  1 -  -  -  - (4)

On adding equation (2) and (4), we get

\rm :\longmapsto\:2 {x}^{2}  = 1

\rm :\longmapsto\:{x}^{2}  = \dfrac{1}{2}

\bf\implies \:x =  \:  \pm \: \dfrac{1}{ \sqrt{2} }  -  -  - (5)

On Subtracting equation (2) from equation (4), we get

\rm :\longmapsto\: {2y}^{2} = 1

\rm :\longmapsto\:{y}^{2}  = \dfrac{1}{2}

\bf\implies \:y=  \:  \pm \: \dfrac{1}{ \sqrt{2} }  -  -  - (6)

So, we have following options for the values of x and y

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \dfrac{1}{ \sqrt{2} }  & \sf \dfrac{1}{ \sqrt{2} } \\ \\ \sf  - \dfrac{1}{ \sqrt{2} } & \sf  - \dfrac{1}{ \sqrt{2} } \end{array}} \\ \end{gathered}

So,

\rm \implies\:\boxed{ \tt{ \:  \sqrt{i} =  \pm \: \bigg(\dfrac{1}{ \sqrt{2} } + i \: \dfrac{1}{ \sqrt{2} }\bigg) \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

Argument of complex number

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions