Math, asked by monjyotiboro, 1 month ago

Find the square root of 2x+{x}^{2} - 1)i}

Answers

Answered by TRISHNADEVI
6

SOLUTION :

  \\  \\

To Find :-

  • Square root of 2x + (x² - 1)i = ?

Calculation :-

 \\

Given complex number :

  • 2x + (x² - 1)i

Square root of the complex number will be :

  • \sf{ \sqrt{2x + (x {}^{2}  - 1)i}}

Suppose,

  • \sf{ \sqrt{2x + (x {}^{2}  - 1)i} = \alpha  + i  \beta} —————— > (1)

Squaring both side of the Eq. (1), we get,

  •  \bigstar \:  \: \sf{ \{ \sqrt{ 2x + (x {}^{2}  - 1)i} \:  \} {}^{2} =( \alpha + i  \beta) {}^{2}}

\implies \: \sf{2x + (x {}^{2}  - 1)i= \alpha {}^{2}   +( i  \beta) {}^{2} + 2. \alpha .i \beta  }

\implies \: \sf{2x + i(x {}^{2}  - 1)= \alpha {}^{2}   + i {}^{2}   \beta {}^{2} +i \:  2\alpha \beta  }

We know that,

  •  \:  \:  \:  \:  \:  \dag \:  \:  \underline{ \boxed{  \large{\rm{i {}^{2}  =  - 1}}}}

Hence,

  •  \star \:  \:  \sf{2x + i(x {}^{2}  - 1)= \alpha {}^{2}   + i {}^{2}   \beta {}^{2} +i \:  2\alpha \beta  }

\implies \: \sf{2x + i(x {}^{2}  - 1)= \alpha {}^{2}   + ( - 1)\beta {}^{2} +i \:  2 \alpha \beta  }

\implies \: \sf{2x + i(x {}^{2}  - 1)= (\alpha {}^{2}  -  \beta {}^{2}) +i \:  (2\alpha \beta) }

Comparing real and imaginary parts of both side, we get,

  • 2x = α² - β²

  • x² - 1 = 2 α β

We can consider that,

  •   \bigstar \:  \:  \sf{\alpha  {}^{2}  +  \beta  {}^{2}  =  \sqrt{( \alpha  {}^{2}+  \beta  {}^{2}) {}^{2} }}

  \implies \:  \sf{\alpha  {}^{2}  +  \beta  {}^{2} =  \sqrt{( \alpha  {}^{2} + \beta  {}^{2}) - 4 \alpha{}^{2} \beta  {}^{2}  + 4  \alpha{}^{2}  \beta {}^{2}}}  \\  \\  \implies \:  \sf{ \alpha  {}^{2}  +  \beta  {}^{2}  =  \sqrt{( \alpha  {}^{2} -  \beta  {}^{2}) {}^{2} + (2 \alpha  \beta ) {}^{2}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Substituting the values of α² - β² and 2 α β, we get,

  •  \bigstar \:  \:  \sf{\alpha  {}^{2}  +  \beta  {}^{2}  =  \sqrt{( \alpha  {}^{2} -  \beta  {}^{2}) {}^{2} + (2 \alpha  \beta ) {}^{2}}}

 \implies \:  \sf{ \alpha {}^{2}  +   \beta {}^{2}   =  \sqrt{(2x) {}^{2}+ ( {x}^{2}   - 1) {}^{2} }}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \implies \:  \sf{ \alpha {}^{2}  +   \beta {}^{2}   =  \sqrt{( {x}^{2}  + 1) {}^{2} } } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \:  \:  \:  \:  \:  \therefore \:  \underline{ \sf{  \: \alpha {}^{2}  +   \beta {}^{2}   =x {}^{2}  + 1 \: }}\:  \:  -  -  -  -  -  -  > (2)

We have got by comparing that,

  •   \:  \: \:  \: \underline{ \sf{ \:  \alpha  {}^{2}   -  \beta  {}^{2}  = 2x \: }} \:  \:  -  -  -  -  -  -  -  -  > (3)

Adding Eq. (2) and Eq. (3), we get,

  •  \:  \:  \bigstar \:  \:  \sf{2 \alpha  {}^{2}  = x {}^{2}  + 1 + 2x}

 \implies \:  \sf{2 \alpha  {}^{2} = (x + 1) {}^{2}  } \\  \\ \implies \:  \sf{ \alpha  {}^{2} =  \dfrac{(x + 1) {}^{2} }{2}} \\  \\ \implies \:  \sf{ \alpha  =  \sqrt{ \dfrac{(x + 1) {}^{2} }{2} } } \\  \\   \:  \:  \:  \:  \:  \boxed{\sf{ \therefore \:  \:  \alpha  =  \pm \: \dfrac{(x + 1 )}{ \sqrt{2} }}}

Subtracting Eq. (3) from Eq. (2), we get,

  •  \:  \:  \bigstar \:  \:  \sf{2 \beta  {}^{2}  = x {}^{2}  + 1  -  2x}

 \implies \:  \sf{2 \beta  {}^{2} = (x  -  1) {}^{2}  } \\  \\ \implies \:  \sf{ \beta  {}^{2} =  \dfrac{(x  -  1) {}^{2} }{2}} \\  \\ \implies \:  \sf{ \beta  =  \sqrt{ \dfrac{(x  -  1) {}^{2} }{2} } } \\  \\   \:  \:  \:  \:  \:  \boxed{\sf{ \therefore \:  \:  \beta  =  \pm \: \dfrac{(x  -  1 )}{ \sqrt{2} }}}

Now,

Substituting the values of α and β in Eq. (1), we get,

  •  \bigstar \:  \: \sf{ \sqrt{2x + (x {}^{2}  - 1)i} = \alpha  + i  \beta}

 \implies \:  \sf{ \sqrt{2x + (x {}^{2}  - 1)i} = \pm \bigg \{ \frac{(x + 1)}{ \sqrt{2}}  + i \:  \frac{(x - 1)}{ \sqrt{2} } \bigg \} }

Hence,

  • The square root of the complex number 2x + (x² - 1)i is \: \underline{\boxed{ \sf{ \: \pm \bigg \{ \frac{(x + 1)}{ \sqrt{2}}  + i \:  \frac{(x - 1)}{ \sqrt{2} } \bigg \} \: }}}
Similar questions