Math, asked by sahil19194, 1 year ago

find the square root of the complex number -8-6i​

Answers

Answered by venkataramanan18
9

Answer:

Step by step Explanation:

The square root of the given complex number can be expressed as a complex number x + iy.

We have x + yi = sqrt (8 + 6i)

take the square of both the sides

=> (x + yi) ^2 = 8 + 6i

=> x^2 + y^2*i^2 + 2xyi = 8 + 6i

equate the real and complex coefficients

x^2 – y^2 = 8 and 2xy = 6

2xy = 6

=> xy = 3

=> x = 3/y

Substitute in x^2 – y^2 = 8

=> (3/y) ^2 – y^2 = 8

=> 9/y^2 – y^2 = 8

=> 9 – y^4 = 8y^2

=> y^4 + 8y^2 – 9 = 0

=> y^4 + 9y^2 – y^2 – 9 = 0

=> y^2(y^2 + 9) – 1(y^2 + 9) = 0

=> (y^2 – 1) (y^2 + 9) = 0

=> y^2 = 1 and y^2 = -9

we leave out y^2 = -9 as the coefficient y is real

y^2 = 1

=> y = 1, x = 3

and y = -1, x = -3

The square root of 8 + 6i = 3 + i ; -3 – i

Answered by αmαn4чσu
43

\Large\bold{\underline{\underline{Solution:-}}}

let \\  \\ a + ib =  \sqrt{ - 8 - 6i}  \\ squaring \: on \: both \: side \\  \\  {(a + ib)}^{2}  =  - 8 - 6i \\  {a}^{2}  +  {b}^{2}  {(i)}^{2}  + 2abi =  - 8 - 6i \\   {a}^{2}  -  {b}^{2}  + 2abi =  - 8 - 6i \\  \\ compare \: the \: coefficients \\ we \: get \\  \\  {a}^{2}  -  {b}^{2}  =  - 8.....(2)  \\ 2ab =  - 6.....(1)  \\  \\ take \: (1) \\  \\ 2ab =  - 6 \\ ab =  - 3 \\ a =  \frac{ - 3}{b} ....put \: in \: (2) \\  \\  {( \frac{ - 3}{b}) }^{2}  -  {b}^{2}  =  - 8 \\  \frac{9}{ {b}^{2} }  -  {b}^{2}  =  - 8 \\   \\ take \: lcm \: \\  {9 -  {b}^{4} } =  - 8 {b}^{2}  \\  \\  {b}^{4}  - 8 {b}^{2}  - 9 = 0 \\  {b}^{4}  - 9 {b}^{2}  +  {b}^{2}  - 9 = 0 \\  {b}^{2} ( {b}^{2}  - 9) + 1( {b}^{2}  - 9) = 0 \\ ( {b}^{2}  + 1)( {b}^{2}  - 9) = 0 \\  \\ from \: here \: we \: get \\  {b}^{2} =  - 1(not \: possible) \\  {b}^{2}  = 9 = 3 \: or \:  - 3 \\ put \: value \: of \: b \: in \: eq(2) \\  {a}^{2}  - 9 =  - 8 \\  {a}^{2}  = 1 \\  \\ so \: required \: answer \\  \sqrt{ - 8 - 6i}  = 1  -  3i \\  \\ we \: take \: b =  - 3 \: because \:  + 3 \:  \\ is \: not \: satisfying \: the \: \: condition

Similar questions