Math, asked by ankesh111, 9 months ago

Find the subset of the following which has been given in the picture above...
Both Q.no.6 and 7


{ Wrong answers will be reported}​

Attachments:

Answers

Answered by karannnn43
14

_________________________________________

\small\underline\bold\red{Question-}

  •  \sqrt[3]{x}  + 2 \sqrt[3]{ {x}^{2} }  = 3

\small\underline\bold\red{To\:Find-}

  • Value\:of\:x

_________________________________________

▪️ Let \sqrt[3]{x} = a

2a² + a - 3 = 0

\implies 2 {a}^{2}-2a+ 3a-3 = 0

\implies 2a(a-1)+3(a-1) = 0

\implies (a-1)(2a+3) = 0

_________________________________________

Hence,

(a-1) = 0

\implies a = 1

\implies \sqrt[3]{x} = 1

\implies x = (1)³ = 1

or,

(2a+3) = 0

\implies a = \frac{-3}{2}

\implies \sqrt[3]{x} = \frac{-3}{2}

\implies x = {( \frac{ - 3}{2} )}^{3} = \frac{-27}{8}

_________________________________________

∴ x ∈ { 1,\frac{-27}{8} }

_________________________________________

Answered by Anonymous
1

Answer:

\huge\fcolorbox{white}{red}{Hello Ankesh}

Question−

[3]{x} + 2 [3]{ {x}^{2} } = 3

3

x

+2

3

x

2

=3

ToFind−

Value of x

_________________________________________

▪️ Let[3]{x}

3

x

= aa

2a² + a - 3 = 0

2 {a}^{2}a

2

-2a^2 + 3a -3 = 0

2a (a -1)+3(a-1) = 0

(a-1)(a−1) (2a+3)(2a+3) = 0

_________________________________________

Hence,

(a-1)(a−1) = 0

a = 1

[3]{x}

3

x

= 1

x = (1)³ = 1

or,

(2a+3)(2a+3) = 0

\implies⟹ a = \frac{-3}{2}

2

−3

[3]{x}

3

x

= {-3}{2}

2

−3

⟹ xx = { - 3}{2} )}^{3}(

2

−3

)

3

= \frac{-27}{8}

8

−27

_________________________________________

∴ x ∈ { 1,{-27}{8}

8

−27

}

______________________________________

Similar questions