Find the sum 25,28,31,------- 100
Answers
Given :-
- First term = a = 25
- Common difference = d = 28 - 25 = 3
- Last term = aₙ = 100
To find :-
Sum of n terms = Sₙ
Solution :-
Step 1: Firstly, find out the number of terms (n) in this A.P.
aₙ = a + (n - 1)d
⇒ 100 = 25 + (n - 1)3
⇒ 100 - 25 = 3 (n - 1)
⇒ 3 (n - 1) = 75
⇒ (n - 1) = 25
⇒ n = 26
Step 2: Sₙ can be found out by applying the formula:
Sₙ = n ÷ 2 (a + aₙ)
⇒ Sₙ = 26 ÷ 2 (25 + 100)
⇒ Sₙ = 13 (125)
⇒ Sₙ = 1625
∴ Sum of n terms of this particular A.P = 1625
KNOW MORE:
- Sum of n terms can also be given as:
Sₙ = n/2 (2a + (n - 1)d)
Given :
Series : 25,28,31,..., 100
To find :
Sum of all the terms in series
Solution :
Firstly, let us prove that the series forms an AP
i.e. d1=d2
Series : 25,28,31,..., 100
a1=25
a2=28
a3=31
d1=a2-a1=28-25=3
d2=a3-a2=31-28=3
d1=d2
Since, common difference is same between each terms, the above series forms an AP
AP : 25,28,31,..., 100
a1=25
a2=28
a3=31
a(n)=100
d=3
- To find number of terms (n) in an AP
a(n)=a+(n-1)d
100=25+(n-1)3
100-25=3n-3
75+3=3n
78=3n
78/3=n
26=n
n=26
» Total terms in AP are 26.
- Sum of all terms in AP
Sn=n/2[2a+(n-1)d] {Sum for n terms}
Sn=26/2[2×25+(26-1)3]
Sn=13[50+25×3]
Sn=13[50+75]
Sn=13[125]
Sn=13×125
Sn=1625
Sn=1625
Sum of terms in AP = 1625