Math, asked by bharatsingh83648, 1 year ago

find the sum first 50 whole number

Answers

Answered by sahildhande987
11

\huge\star{\underline{\underline{\tt{\red{\mid{Answer \implies 1275}}}}}}\star

\large{\boxed{\green{\tt{\underline{Explanation}}}}}

____________________________________

\bold{\underline{\purple{\boxed{Sum\:of\:Terms \implies}}}}sn =  \frac{n}{2} (a + l)

First Term = a = 1

Last Term = l = 50

Number of Terms = n =50

So,

By substituting these values in the formula given above we get

\implies \frac{50}{2} (1+50)

\implies 25 x 51

\huge\implies 1275

____________________________________

Answered by Anonymous
3

\huge{\mathfrak{\underline{\underline{\red{Answer :-}}}}}

1225

\large{\green{\mathrm{To \: Find :-}}}

Sum of first 50 whole number

\large{\green{\mathrm{Given:-}}}

A.P :- 0, 1, 2, 3,......... 49.

First term(a) = 0

Common Difference(d) = 1

Last term(L) = 49

Number of terms(n) = 50

\large{\green{\mathrm{Solution:-}}}

Using Formula

\large{\boxed{\boxed{\red{S_{n} = \frac{n}{2}[2a + (n - 1)d]}}}}

_______________[Put Values]

\sf{S_{n} = \frac{50}{2}[2 * 0 + (50 - 1){\times}1}]

\sf{S_{50} = 25(0 + 49)}

\sf{S_{50} = 25(49)}

\bf{S_{50} = 1225}

\large{\boxed{\boxed{\red{S_{50}= 1225}}}}

Similar questions