Math, asked by omprakash3278, 1 year ago

Find the sum od series upto n terms 5+7+13+31+85+......

Answers

Answered by sprao534
24

Please see the attachment

Attachments:
Answered by isyllus
19

Answer:

S_n=\dfrac{1}{2}(3^n+8n-1)

Step-by-step explanation:

Let the series sum be Sₙ and nth term is tₙ

S_n=5+7+13+31+85+............................+n-terms

S_n=0+5+7+13+31+85+............................+n-terms

Subtract both equation

0=5+(2+6+18+54+............................+(n-1)-terms)-t_n

2+6+18+54+............................+(n-1)-terms   This is GP series

Using sum of series of geometric series

t_n=5+\dfrac{2(3^{n-1}-1)}{3-1}

t_n=4+3^{n-1}

So, the general term of the above series is tₙ

Now, we find the sum of ∑tₙ

S_n=\sum t_n

S_n=\sum_1^n(4+3^{n-1})

S_n=\sum_1^n4+\sum_1^n3^{n-1}

S_n=4n+\dfrac{1\cdot(3^{n}-1)}{3-1}

S_n=4n+\dfrac{3^{n}-1}{2}

S_n=\dfrac{1}{2}(3^n+8n-1)

Similar questions