Math, asked by nithish566m, 14 days ago

find the sum of 20 positive integers which are divisible by 4.answer in step by step​

Answers

Answered by Liam450
3

step 1 Address the formula, input parameters & values.Input parameters & values:The number series 4, 8, 12, 16, 20, 24, 28, 32, .  .  .  .  , 80.The first term a = 4The common difference d = 4Total number of terms n = 20

step 2 apply the input parameter values in the AP formulaSum = n/2 x (a + Tn)= 20/2 x (4 + 80)= (20 x 84)/ 2= 1680/24 + 8 + 12 + 16 + 20 + 24 + 28 + 32 + .  .  .  .   + 80 = 840

Therefore, 840 is the sum of first 20 positive integers which are divisible by 4.

Answered by Limafahar
93

\large\boxed{\textsf{\textbf{\red{Question\::-}}}}

  • find the sum of 20 positive integers which are divisible by 4.

\large\boxed{\textsf{\textbf{\red{Answer \::-}}}}

Step 1

  • Address the formula, input parameters & values.
  • Input parameters & values:
  • The number series 4, 8, 12, 16, 20, 24, 28, 32, . . . . , 80.
  • The first term a = 4
  • The common difference d = 4
  • Total number of terms n = 20

Step 2

  • apply the input parameter values in the AP formula
  • Sum = n/2 x (a + Tn)
  • = 20/2 x (4 + 80)
  • = (20 x 84)/ 2
  • = 1680/2
  • 4 + 8 + 12 + 16 + 20 + 24 + 28 + 32 + . . . . + 80 = 840

Therefore, 840 is the sum of first 20 positive integers which are divisible by 4.

Similar questions