Math, asked by sharmamukesh8235, 11 months ago

.find the sum of 25 term of an A.P having common difference 6 and 18 term is 110

Answers

Answered by geetapadawal23
26

Answer:

answer is 200

Step-by-step explanation:

d=6

a18=110

a+17d=110

a+17*6=110

a+102=110

a=110-102

a=8

S25=n/2(2a+(n-1)d)

s25=25/2(2×8+24×6)

=25/2×160

S25=200

Thank you

hope it helps you..

Answered by kingofself
1

The sum of 25 term of the given A.P series is 2000.

Step-by-step explanation:

The common difference, d=6

Then, the 18th term is 110,  a_{18} =110

As we know that, the sum of first term and the nth term will give (n+1)th term.

Therefore,

                                               a_{18} = a+17d =110

Then substitute the value of d= 6,

                                             a + (17 \times 6) =110

                                               a + 102 = 110

                                               a= 110 - 102

                                                   a = 8 .

Then, the first term is 8.

As we know the formula, that is

                                        S_n = \frac{n}{2} (2a+(n-1)d)

                                      S_{25} = \frac{25}{2} (2a+(25-1)d)

                                    S_{25} = \frac{25}{2} ((2\times 8} + (24 \times 6))

                                                = \frac{25}{2} \times 160

                                                 = 25 \times 80

                                               = 2000.

                                              S_{25} =2000.

Therefore, the sum of 25 term of the given A.P series is 2000.

To know more:

If sum of first 6 terms of an A.P is 36 and that of the first 16 terms is 256.Find the sum of first 10 terms.

https://brainly.in/question/1288521

Similar questions