Find the sum of :-
85+80+75+..........+15
(Arithmetic progression)
Answers
Answered by
7
Tn = a + (n-1) d
Tn = 85+ (n-1)(-5)
15 = 85-5n+5
5n = 75
n= 15
Sn = n/2 (a+l)
Sn = 7(85+15)
Sn= 700
Tn = 85+ (n-1)(-5)
15 = 85-5n+5
5n = 75
n= 15
Sn = n/2 (a+l)
Sn = 7(85+15)
Sn= 700
Answered by
28
Answer:-
Given:
85 + 80 + 75 +... 15 are in AP.
Here,
- a = 85
- d = 80 - 85 = - 5
- aₙ = 15.
We know that,
nth term of an AP (aₙ) = a + (n - 1)d
So,
⟶ 15 = 85 + (n - 1) ( - 5)
⟶ 15 - 85 = - 5n + 5
⟶ 15 - 85 - 5 = - 5n
⟶ - 75 = - 5n
⟶ - 75/ - 5 = n
⟶ 15 = n
Now,
Sum of first n terms of an AP (Sₙ) = n/2 * [ 2a + (n - 1)d ]
Hence,
⟶ S₁₅ = 15/2 * [ 2(85) + (15 - 1)( - 5) ]
⟶ S₁₅ = 15/2 * [ 170 - 70 ]
⟶ S₁₅ = (15/2) * 100
⟶ S₁₅ = 750
∴ The sum of the given AP is 750.
Similar questions