Math, asked by ritwikraj838, 6 hours ago

Find the sum of a square- b square +b square-c square +c square- a square =​

Answers

Answered by barmanbhanita96
0

Answer:

We just read that by multiplying (a + b + c) by itself we can easily derive the a2 + b2 + c2 formula. Let us see the expansion of a2 + b2 + c2 formula.

(a + b + c)2 = (a + b + c)(a + b + c)

(a + b + c)2 = a2 + ab + ac + ab + b2 + bc + ca + bc + c2

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

On subtracting 2ab + 2bc + 2ca from both sides of the above formula, the a2 + b2 + c2 formula is:

a2 + b2 + c2 = (a + b + c)2 - 2 (ab + bc + ca)

(or)

a2 + b2 + c2 = (a + b + c)2 - 2ab - 2bc - 2ca

a2 + b2 + c2  = (a + b + c)2 - 2(ab + bc + ca)

We can also express a2 + b2 + c2 formula as,

a2 + b2 + c2  = (a - b - c)2 + 2ab + 2ac - 2bc 

Let us see how to use the a2 + b2 + c2 formula in the following section.

Want to find complex math solutions within seconds?

Use our free online calculator to solve challenging questions. With Cuemath, find solutions in simple and easy steps.

Book a Free Trial Class

Examples on a2 + b2 + c2 Formula

Let us take a look at a few examples to better understand the formula of a2 + b2 + c2 .

Example 1: Find the value of a2 + b2 + c2 if a + b + c = 10 and ab + bc + ca = -2. 

Solution:

To find: a2 + b2 + c2

Given that:

a + b + c = 10

ab + bc + ca = -2

Using the a2 + b2 + c2 formula,

a2 + b2 + c2 = (a + b + c)2 - 2(ab + bc + ca)

a2 + b2 + c2 = (10)2 - 2(-2) = 100 + 4 = 104

Answer: a2 + b2 + c2 = 104.

Example 2: Find the value of a2 + b2 + c2 if a + b + c = -3, 1/a + 1/b + 1/c = -2 and abc = 3.

Solution:

To find: a2 + b2 + c2

Given that:

a + b + c = -3 ... (1)

1/a + 1/b + 1/c = -2 ... (2)

abc = 3 ... (3)

Multiplying (2) and (3),

abc(1/a + 1/b + 1/c) = (3)(−2)

bc + ca + ab = −6

Using the a2 + b2 + c2 formula,

a2 + b2 + c2 = (a + b + c)2 - 2(ab + bc + ca)

a2 + b2 + c2 = (-3)2 - 2(-6) = 9 + 12 = 21

Answer: a2 + b2 + c2 = 21.

Example 3: Find the value of a2 + b2 + c2 if a + b + c = 20 and ab + bc + ca = 100. 

Solution:

To find: a2 + b2 + c2

Given that:

a + b + c = 20

ab + bc + ca = 100

Using the a2 + b2 + c2 formula,

a2 + b2 + c2 = (a + b + c)2 - 2(ab + bc + ca)

a2 + b2 + c2 = (20)2 - 2(100) = 400 - 200 = 200

Answer: a2 + b2 + c2 = 200.

Similar questions