Math, asked by brahmasmithashyam, 1 month ago

Find the sum of all 2-digit numbers which are divisible by 3.

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let first find the series of the two digit number which are divisible by 3.

\rm :\longmapsto\:12, \: 15, \: 18, -  -  -  - ,99

Now, it forms an AP series, with

\rm :\longmapsto\:first \: term, \: a = 12

\rm :\longmapsto\:common \: difference, \: d = 3

\rm :\longmapsto\: {n}^{th} \: term, \: a_n = 99

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:99 = 12 + (n - 1)3

\rm :\longmapsto\:99 - 12  =  (n - 1)3

\rm :\longmapsto\:87  =  (n - 1)3

\rm :\longmapsto\:29  =  n - 1

\bf\implies \:\boxed{ \bf{ \:n \:  =  \: 30}}

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg( \:a\:+ \: a_n \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Thus,

\rm :\longmapsto\:S_n \:  =  \: \dfrac{30}{2}(12 + 99)

\rm :\longmapsto\:S_n \:  =  \: 15 \times 111

\rm :\longmapsto\:\boxed{ \bf{ \:S_n \:  =  \: 1665}}

Additional Information :-

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.
Similar questions