Find the sum of all multiples of 7 lying between 500 and 900.
Class 10
Arithmetic Progressions
Answers
Answered by
5
Find the first term:
500 ÷ 7 = 71 remainder 3 = 72 (round up)
First term = 72 x 7 = 504
Find the last term:
900 ÷ 7 = 128 remainder 4 = 128 (round down)
last term = 128 x 7 = 896
Find the number of terms
an = a1 + ( n - 1) d
896 = 504 + (n - 1)7
896 = 504 + 7n - 7
896 = 497 + 7n
7n = 896 - 497
7n = 399
n = 57
Find the sum:
sn = n/2 (a1 + an)
s57 = 57/2 (504 + 896) = 39900
Answer: The sum is 39900
Answered by
5
sum of all multiples of 7 lying between 500 and 900.
--------
Solution :
A.P : 504, 511, 518.......896
a=504
d = 7
an = 896
Sn = n/2 (a+an)
n = ?
an = a + (n-1)d
896 = 504 + (n-1) 7
896-504 = (n-1)7
7 (n-1) = 392
(n-1) = 392/7
= 56
n = 57
Sn = 57/2 (504+896)
= 57/2 × 1400
57 × 700 = 39,900
--------
Solution :
A.P : 504, 511, 518.......896
a=504
d = 7
an = 896
Sn = n/2 (a+an)
n = ?
an = a + (n-1)d
896 = 504 + (n-1) 7
896-504 = (n-1)7
7 (n-1) = 392
(n-1) = 392/7
= 56
n = 57
Sn = 57/2 (504+896)
= 57/2 × 1400
57 × 700 = 39,900
Similar questions