Math, asked by Saliq1264, 1 year ago

Find the sum of all odd numbers from 351 to 373

Answers

Answered by ankushp20043d
15

Answer:

4344

Step-by-step explanation:

a=351    d=2

n=x      tn=373

tn=a+(n-1)d

373=351+2n-2

12=2n

n=6

sn=n/2(a+tn)

sn=6*724

sn=4344

Answered by SavageBlast
140

Given:-

  • An A.P 351, 353, 355, . . . . . , 373

To Find:-

  • Sum of the A.P

Formula used:-

  • a_n= a+(n-1)d

  • S_n=\dfrac{n}{2}(a+l)

Solution:-

Here,

  • a = 351

  • d = 353 - 351 = 2

  • a_n\:or\:l\:= 373

Now,

\implies\:a_n= a+(n-1)d

\implies\:373= 351+(n-1)2

\implies\:373= 351+2n-2

\implies\:373-349= 2n

\implies\:2n=24

\implies\:n=\dfrac{24}{2}

\implies\:n=12

Now using,

S_n=\dfrac{n}{2}(a+l)

\implies\:S_n=\dfrac{12}{2}(351+373)

\implies\:S_n=6×724

\implies\:S_n=4344

Hence, The sum of all odd numbers from 351 to 373 is 4344.

━━━━━━━━━━━━━━━━━━━━━━━━━

More Formulas:-

  • S_n=\dfrac{n}{2}[2a+(n-1)d]

  • S_n=\dfrac{n}{2}[a+a+(n-1)d]

  • S_n=\dfrac{n}{2}(a+a_n)

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions