find the sum of all the three digit natural number which are divisible of 7.
Answers
Answered by
16
Heya mate, Here is ur answer
a(first term) = 105
d =7 (divisiblity by 7)
an= 994
a+(n-1)d=994
105+(n-1)7=994
(n-1) 7=994-105
(n-1) 7=889
n-1=889/7
n-1=127
n=127+1
n=128
Sn=n/2 (a+an)
==========================
Warm regards
@Laughterqueen
Be Brainly ✌✌✌
a(first term) = 105
d =7 (divisiblity by 7)
an= 994
a+(n-1)d=994
105+(n-1)7=994
(n-1) 7=994-105
(n-1) 7=889
n-1=889/7
n-1=127
n=127+1
n=128
Sn=n/2 (a+an)
==========================
Warm regards
@Laughterqueen
Be Brainly ✌✌✌
Answered by
5
Answer: 70336
Step-by-step explanation:
Let the A.P be
105,112,119,................,994.
a = 105 ; d = 112-105 = 7 ; l = 994
a + (n - 1)d = 994
105 + (n - 1)7 = 994
105 + 7n - 7 = 994
7n = 994 - 105 + 7
7n = 889 - 7
7n = 889
n = 128
Now,
a = 105 ; d = 7 ; n = 128
Sn = n/2[ 2a + (n - 1)d]
Sn = 128/2[2×105 + (128 - 1)7]
Sn = 64[210 + 896 - 7]
Sn = 64[1106 - 7]
Sn = 64[1099]
Sn = 70336
Similar questions