Math, asked by pavan14395, 7 months ago

find the sum of first 15 terms of ap 5,8,11,14.......​

Answers

Answered by Anonymous
4

\sf\huge\blue{\underline{\underline{ Question : }}}

Find the sum of first 15 terms of ap 5,8,11,14.......

\sf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • AP : 5,8,11,14.....

To find,

  • Sum of first 15 terms.

Let,

\tt\:a_{1} = 5

\tt\:a_{2} = 8

Common difference (d) = a2 - a1

➡ 8 - 5 = 3

\boxed{Common\:difference = 3 }

Now,

  • a = 5
  • d = 3
  • n = 15

By using sum of nth terms of an AP :

\tt\red{:\implies S_{n} = \frac{n}{2} [ 2a + (n - 1)d ]}

Where,

  • a = First Term of AP.
  • d = Common Difference of AP.
  • n = Number of terms of AP.
  • Sn = Sum of nth terms of AP.

\bf\:\leadsto S_{15} = \frac{15}{2} [ 2(5) + (15 - 1)(3) ]

\bf\:\leadsto S_{15} = \frac{15}{2} [ 10 + (14)(3) ]

\bf\:\leadsto S_{15} = \frac{15}{2} [ 10 + 42 ]

\bf\:\leadsto S_{15} = \frac{15}{2} [ 52 ]

\bf\:\leadsto S_{15} = 15[26]

\bf\:\leadsto S_{15} = 390

\underline{\boxed{\bf{\purple{ \therefore Sum\:of\:15\:terms\:of\:an\:AP= 390.}}}}\:\orange{\bigstar}

More Information :

\boxed{\begin{minipage}{5 cm} AP Formulae   \\ \\$:  \implies a_{n} = a + (n - 1)d \\ \\ :\implies S_{n} = \frac{n}{2} [ 2a + (n - 1)d ] $ \end{minipage}}

______________________________________________________

Answered by nksharma88084
2

Answer: 390

Step-by-step explanation:

Sn=n/2[2a+(n-1)d]

n=15, a=5, d=3

S15=15/2[2*5+(15-1)3]

S15=15/2[10+42]

S15=15/2[52]

S15=15*26

S15=390 ans.

Similar questions
Math, 3 months ago