Math, asked by adiputty2004gmailcom, 10 months ago

Find the sum of first 30 terms of arithmetic progression whose third term is 11 and 5th term is 17​

Answers

Answered by Cynefin
36

━━━━━━━━━━━━━━━━━━━━

Required Answer:

♦️ GiveN:

  • Third term of an AP = 11
  • Fifth term of an AP = 17

♦️ To FinD:

  • Sum of first 30 terms of the AP

━━━━━━━━━━━━━━━━━━━━

How to Solve?

As the question of AP (Arithmetic Progression) concept. We just need to know certain formulas like nth term of AP and sum of n terms. The arithmetic progression has a common difference between their terms.

\large{\underline{\underline{\purple{\rm{nth\: term \:of\: an \:AP :}}}}}

 \large{ \boxed{ \rm{T_n = a + (n - 1)d}}}

Where, Tn = nth term, a = first term, n = no. of terms and d = common difference.

━━━━━━━━━━━━━━━━━━━━

\large{\underline{\underline{\purple{\rm{Sum\:of \:n\: terms \:of\: an\:  AP :}}}}}

 \large{ \boxed{ \rm{S_n =  \frac{n}{2}  \bigg(\: 2a + (n - 1)d} \bigg)}}

Where, Sn = Sum of n terms, rest are same.....

So, let's solve this question, by using these formulae.

━━━━━━━━━━━━━━━━━━━━

Solution:

We have,

 \large{ \rm{ \longrightarrow \: a_3 = 11}}  \\   \\   \rm{ \dag{ \red{by \: using \: nth \: term \: formula....}}} \\  \\  \large{ \rm{ \longrightarrow \: a + 2d = 11........(1)}}

Similarly,

\large{ \rm{ \longrightarrow \: a_5 = 17}} \\  \\  \rm{ \dag{ \red{by \: using \: nth \: term \: of \: formula}}} \\  \\ \large{ \rm{ \longrightarrow \: a + 4d = 17........(2)}}

Subtracting eq.(1) from eq.(2),

\large{ \rm{ \longrightarrow \: a + 4d - (a + 2d) = 17 - 11}} \\  \\ \large{ \rm{ \longrightarrow \: \cancel{ a} + 4d -  \cancel{a} - 2d = 6}} \\  \\ \large{ \rm{ \longrightarrow \: 2d = 6}} \\  \\ \large{ \rm{ \longrightarrow \: d = 3}}

Putting value of d in eq.(1),

\large{ \rm{ \longrightarrow \: a + 2(3) = 11}} \\  \\ \large{ \rm{ \longrightarrow \: a + 6 = 11}} \\  \\ \large{ \rm{ \longrightarrow \: a = 5}}

So, we have our 1st term = 5 and c.d = 3, let's find the sum of 30 terms by using sum of n terms formula,

By using formula,

\large{ \rm{ \longrightarrow \: S_{30} =  \frac{30}{2}  \bigg(2(5) + (30 - 1)3 \bigg)}} \\  \\ \large{ \rm{ \longrightarrow \: S_{30} =  15 \bigg((10 + 87) \bigg)}} \\  \\ \large{ \rm{ \longrightarrow \: S_{30} = 15 \times 97}} \\  \\ \large{ \rm{ \longrightarrow \: S_{30} =  \boxed{ \rm{ \red{1455}}}}} \\  \\  \large{ \therefore{ \underline{ \underline{ \rm{ \green{hence \: soved \:  \dag}}}}}}

━━━━━━━━━━━━━━━━━━━━

Answered by TheSentinel
43

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{Find \ the \ sum \ of \ first \ 30 \ terms \ of }

\rm{arithmetic \ progression \ whose \ 3^{rd} \ term}

\rm{is \ 11 \ and \ 5^{th} \ term \ is \ 17}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\purple{\star{\sf Answer:}}}}}}}} \\ \\

\rm\green{The \ sum \ of \ first \ 30 \ terms \ of \ the \ AP}

\rm{\red{\boxed{\boxed{\green{\star{S_{30} =  1455}}}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{The \ 3^{rd} \ term \ of \ the \ AP}

\bf\implies{t(3) \ = \ 11} \\

\rm{The \ 5^{th} \ term \ of \ the \ AP}

\bf\implies{t(5) \ = \ 17} \\ \\

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{The \ sum \ of \ the \ first \ 30 \ terms \ of \ the \ AP}

\rm{i.e. \ S(30) \ = \ ?}

_________________________________________

\green{\underline{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}}} \\ \\

\rm{We \ are \ given \ that}

\rm{The \ 3^{rd} \ term \ of \ the \ AP}

\rm\implies{t(3) \ = \ 11} \\

\rm{The \ 5^{th} \ term \ of \ the \ AP}

\rm\implies{t(5) \ = \ 17} \\ \\

\rm{We \ know}

\rm{The \ n^{th} \ term \ of \ AP}

\rm{\green{\boxed{\orange{\star{T(n) = a + (n - 1)d}}}}} \\

\rm{Where, \ T(n) \ = \ n^{th} \ term,}

\rm{a \ = \ first \ term ,}

\rm{n \ = \ number \ of \ terms }

\rm{d \ = \ common \ difference } \\

\rm\therefore{According \ to \ first \ condition ,}

\rm\implies{t(3) \ = \ 11} \\

\rm\therefore{t(3) \ = \ 2a \ + \ (3-1)d}

\rm\therefore{11 \ = \ a \ + \ 2d}

\rm\therefore{a \ + \ 2d \ = \ 11 \ ..................(a)}

\rm{Now,}

\rm{According \ to \ second \ condition} \\

\rm\implies{t(5) \ = \ 17} \\

\rm\therefore{t(5) \ = \ a \ + \ (5-1)d}

\rm\therefore{17 \ = \ a \ + \ 4d}

\rm\therefore{ a \ + \ 4d \ = \ 17 \ ...................(b)}

\rm{Subtracting \ equation \  () \ from \ (b) }

\rm{a \ + \ 4d \ = \ 17 }

\rm{-}

\rm{a \ + \ 2d \ = \ 11 }

________________________

\rm{2d \ = \ 6} \\

\rm{d \ = \ \frac{6}{2}}

\rm{\blue{\boxed{\pink{\therefore{d \ = \ 3}}}}} \\ \\

\rm{Now, \ putting \ d=3 \ in \ equation \ (a)}

\rm{We \ get,}

\rm{a \ + \ 6 \ = \ 11}

\rm{a \ = \ 11 \ - \ 6}

\rm{\blue{\boxed{\pink{\therefore{a \ = \ 5}}}}} \\ \\

\rm{Now,}

\rm{Sum\:of \:n\: terms \:of\: an\:  AP :}

\rm{\green{\boxed{\orange{\star{S(n) =  \frac{n}{2}  ( 2a + (n - 1)d)}}}}} \\

\rm{Where, \ Sn \ = \  Sum \  of \  n \  terms}

\rm{We \ have \ to \ find \ sum \ of \ first \ 30 \ terms \ of \ AP}

\rm\therefore{By \  using \  formula, }

\rm{ \implies {S_{30} =  \frac{30}{2}  (2(5) + (30 - 1)3 )}} \\  \\

\rm{ \implies{S_{30} =  15 (10 + 87) }} \\  \\

\rm{ \implies{S_{30} = 15 \times 97}} \\  \\

\rm{\red{\boxed{\boxed{\green{\star{S_{30} =  1455}}}}}}

____________________________________________

\rm\red{Hope \ it \ helps \ :))}

Similar questions