Math, asked by aryan021212, 9 hours ago

Find the sum of first n terms of the series

1 + 2. 2! + 3. 3! + 4. 4! + --------​

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given series is

\rm \: 1 + 2.2! + 3.3! + 4.4! +  -  -  - n \: terms

can be rewritten as

\rm  \:  = \: 1.1! + 2.2! + 3.3! + 4.4! +  -  -  - n \: terms

So, nth term of the series is given by

\rm \:  t_{n} = n. \: n!

can be further rewritten as

\rm \:  t_{n} = (n + 1 - 1). \: n!

\rm \: t_{n} = (n + 1).n! \:  -  \: n!

On substituting n = 1, 2, 3, ------, n, we get

\rm \: t_{1} = (1 + 1).1! \:  -  \: 1! = 2.1! - 1! = 2! - 1!

\rm \: t_{2} = (2 + 1).2! \:  -  \: 2! = 3.2! - 2! = 3! - 2!

\rm \: t_{3} = (3 + 1).3! \:  -  \: 3! = 4.3! - 3! = 4! - 3!

.

.

.

.

\rm \: t_{n} = (n + 1).n! \:  -  \: n!

Now, we know Sum of n terms is

\rm \: S_n \:  =  \: \displaystyle\sum_{n=1}^n\rm t_{n}

\rm \:  =  \: t_{1} + t_{2} + t_{3} +  -  -  -  -  + t_{n}

\rm \:  =  \: (2! - 1!) + (3! - 2!) + (4! - 3!) +  -  -  -  + (n + 1)! - n!

\rm \:  =  \: (n + 1)! \:  -  \: 1!

\rm \:  =  \: (n + 1)! - 1

Hence,

\boxed{\tt{ \rm \: 1 + 2.2! + 3.3! + 4.4! +  -  -  - n \: terms  = (n + 1)! - 1\: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{ \displaystyle\sum_{n=1}^n\rm n = 1 + 2 + 3 +  -  -  + n \:  =  \frac{n(n + 1)}{2} \: }} \\

\boxed{\tt{ \displaystyle\sum_{n=1}^n\rm  {n}^{2}  = {1}^{2} +  {2}^{2} +  {3}^{2} +  -  -  +  {n}^{2}  \:  =  \frac{n(n + 1)(2n + 1)}{6} \: }} \\

\boxed{\tt{ \displaystyle\sum_{n=1}^n\rm  {n}^{3}  = {1}^{3} +  {2}^{3} +  {3}^{3} +  -  -  +  {n}^{3} \:  =  {\bigg[\dfrac{n(n + 1}{2} \bigg]}^{2} \: }} \\

Answered by XxitzZBrainlyStarxX
5

[Refer to the above attachment]

Hope you have satisfied.

Attachments:
Similar questions