Math, asked by abdisalamciro25, 10 months ago

find the sum of indicated number of terms in each of the following arithmetic progresions 2,4,6,8,---100terms​

Answers

Answered by BrainlyConqueror0901
78

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Sum\:of\:50th\:term=2550}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: { \implies First \: term(a_{1}) = 2 }\\  \\  \tt:  {\implies Common \: difference(d) = 2}\\  \\  \tt:  {\implies Last \: term(l) = 100} \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  {\implies  Sum \: of \:  n_{th} \: term = ?}

• According to given question :

 \bold{As \: we \: know \:that} \\  \tt:{\implies  a_{n}  = a + (n - 1)d} \\  \\  \tt:{\implies 100 = 2 + (n - 1)2}  \\  \\ \tt:{\implies 100 - 2 = 2n - 2} \\  \\  \tt:{\implies 98 + 2 = 2n} \\  \\  \tt:{\implies  \frac{100}{2} = n }\\  \\  \tt: {\implies n = 50 \: terms } \\  \\  \bold{As \: we \: know \: that} \\  \tt:{\implies s_{n} =  \frac{n}{2} (a + l) }\\  \\ \tt:{\implies s_{50} =  \frac{50}{2} (2 + 100)} \\  \\ \tt:  {\implies s_{50} =  25 \times 102} \\  \\  \green{\tt:{\implies s_{50} = 2550}}

Answered by Anonymous
65

AnswEr :

\bf{\green{\underline{\underline{\bf{Given\::}}}}}

The terms in each of the following arithmetic progression 2,4,6,8.........100 terms.

\bf{\green{\underline{\underline{\bf{To\:find\::}}}}}

The sum of Indicated number.

\bf{\green{\underline{\underline{\bf{Explanation\::}}}}}

We know that \sf{n^{th} } formula :

\bf{\boxed{\bf{a_{n}=a+(n-1)d}}}

\bf{We\:have}\begin{cases}\sf{First\:term\:(a)=2}\\ \sf{Common\:difference\:(d)=4-2=2}\\ \sf{Last\:term\:(l)=100}\end{cases}}

A/q

\mapsto\tt{100=2+(n-1)2}\\\\\\\mapsto\tt{100=\cancel{2}+2n\cancel{-2}}\\\\\\\mapsto\tt{100=2n}\\\\\\\mapsto\tt{n=\cancel{\dfrac{100}{2}}}\\ \\\\\mapsto\tt{\red{n=50}}

Now, using formula of the sum :

\bf{\boxed{\bf{S_{n}=\frac{n}{2} [2a+(n-1)d]}}}}

\mapsto\tt{S_{50}=\cancel{\dfrac{50}{2}} [2*2+(50-1)2]}\\\\\\\mapsto\tt{S_{50}=25(4+49*2)}\\\\\\\mapsto\tt{S_{50}=25(4+98)}\\\\\\\mapsto\tt{S_{50}=25(102)}\\\\\\\mapsto\tt{S_{50}=25\times 102}\\\\\\\mapsto\tt{\red{S_{50}=2550}}

\therefore\sf{\large{\pink{\underline{\sf{The\:sum\:is\:S_{50}=2550}}}}}

Similar questions